Abstract:
This application provides a structure of the optical sensor, in which a photosensitive element is arranged on a substrate, a colloid layer is arranged on the upper part of the substrate and covers the photosensitive element, and a thin film is further arranged. The device includes an adhesive layer and a light-transmitting layer, the adhesive layer is disposed above one of the colloid layers, the light-transmitting layer is disposed above one of the adhesive layers, and the structure can be used to provide the film member that can be changed according to requirements The optical design reduces the production cost of the optical sensor; this application further provides a shielding layer between the film member and the colloid layer to improve the photosensitive efficiency of the optical sensor.
Abstract:
An optical sensing module for an electronic device is provided. The electronic device includes an opaque layer and an aperture formed on the opaque layer, wherein the optical sensing module includes an optical sensor; a light guide element, disposed between the opaque layer and the optical sensor and configured to guide light to the optical sensor through the aperture; and a diffusing layer, disposed between the opaque layer and the light guide element, configured to diffuse the light to the light guide element.
Abstract:
A sensing module includes a first sensor, for sensing a light signal to generate a first sensing signal including a first crosstalk component related to a crosstalk signal in the light signal; a second sensor, for sensing the light signal to generate a second sensing signal including a second crosstalk component related to the crosstalk signal; and an arithmetic unit, for combining the first sensing signal and the second sensing signal according to a ratio between the first crosstalk component and the second crosstalk component, to generate an output signal; wherein a distance between the first sensor and a light source generating the light signal is different from a distance between the second sensor and the light source.
Abstract:
A light sensor and a control method thereof are disclosed. The light sensor comprises a light-emitting element, a first light-sensing unit and a second light-sensing unit. The light-emitting element generates an emission signal. The light-sensitive characteristic of the first light-sensing unit corresponds to a first wavelength range. The light-sensitive characteristic of the second light-sensing unit corresponds to a second wavelength range, which is different from the first wavelength range. In this way, when the emission signal is reflected by an object and received by the first light-sensing unit and the second light-sensing unit, the type of the object may be determined based on the difference between the signal sensed by the first light-sensing unit and the signal sensed by the second light-sensing unit.
Abstract:
An optical sensing module for an electronic device is provided. The electronic device includes an opaque layer and an aperture formed on the opaque layer, wherein the optical sensing module includes an optical sensor; a light guide element, disposed between the opaque layer and the optical sensor and configured to guide light to the optical sensor through the aperture; and a diffusing layer, disposed between the opaque layer and the light guide element, configured to diffuse the light to the light guide element.
Abstract:
A sensing module includes a first sensor, for sensing a light signal to generate a first sensing signal including a first crosstalk component related to a crosstalk signal in the light signal; a second sensor, for sensing the light signal to generate a second sensing signal including a second crosstalk component related to the crosstalk signal; and an arithmetic unit, for combining the first sensing signal and the second sensing signal according to a ratio between the first crosstalk component and the second crosstalk component, to generate an output signal; wherein a distance between the first sensor and a light source generating the light signal is different from a distance between the second sensor and the light source.
Abstract:
A sensor includes a first reception unit configured for sensing a first signal of a first frequency band and a second reception unit configured for sensing a second signal of a second frequency band. There is a height difference between the first reception unit and the second reception unit.
Abstract:
A package structure with an optical barrier is provided. An emitter for emitting an optical signal and a detector for receiving the optical signal are disposed on a substrate. The optical barrier is disposed between the emitter and the detector for shielding the excess optical signal. A package material is used to completely cover the optical barrier, the emitter and the detector so that the optical barrier is completely disposed within the package material.
Abstract:
A module comprises a display element, a first polarizing element, a light sensor, a transparent layer, and a second polarizing element. The display element emits a display light source. The first polarizing element covers the display element, and blocks a first phase portion of the display light source and allows a second phase portion of the display light source to penetrate. The transparent layer covers the first polarizing element. The light sensor is disposed on one side of the display element or the first polarizing element. The second polarizing element is disposed between the light sensor and the transparent layer and blocks a second phase portion of the display light source.
Abstract:
A light sensing device includes a substrate, a plurality of light sensing elements and a cover. The plurality of light sensing elements are disposed on the substrate for sensing light. The cover is utilized for sheltering the plurality of light sensing elements, wherein the cover includes a hole for passing the light. A set of the plurality of light sensing elements is selected to be enabled according to a location of the hole relative to the plurality of light sensing elements.