Abstract:
The invention relates to a method for determining an engagement point of a hybrid clutch in a hybrid vehicle; which hybrid clutch is actuated by a hydrostatic clutch actuator and disconnects or connects an internal combustion engine and an electric traction drive; the engagement point is determined by slowly actuating the clutch starting from a position in which the hybrid clutch is in the non-actuated state, and monitoring a moment of the electric traction drive when a defined increase in the momentum is detected. In a method in which engagement point adaptation is optimized, a current engagement point (tp) is adapted during operation of the hybrid vehicle using a start-up routine, by which a first engagement point is determined when the hybrid vehicle is started; the hybrid clutch is moved close to a previously determined engagement point, and starting from said last determined engagement point, the hybrid clutch is displaced further until the defined increase in the moment is detected.
Abstract:
A method for adjusting a co-efficient of friction of a disconnect clutch of a hybrid vehicle, the hybrid disconnect clutch separating or connecting an internal combustion engine and an electrical motor, including: delivering, to drive wheels of the hybrid vehicle, a torque output by the internal combustion engine and the electrical motor; determining the co-efficient of friction while the disconnect clutch is in a slipping state; operating the disconnect clutch in first and second operating modes, the first mode including an open state of the disconnect clutch and the second mode including a closed state of the disconnect clutch; and increasing the co-efficient of friction for more rapid adjustment of the slipping state only in the transition from the closed state to the opened state.
Abstract:
A method for determining a measuring point of a hybrid decoupler of a hybrid vehicle, which is operated by a hydrostatic clutch actuator, with the hybrid decoupler coupling or decoupling an internal combustion engine and an electro-traction drive. The measuring point is determined by a slow operation of the hybrid decoupler, starting from a position of the hybrid decoupler which it assumes in the idle state, when a defined increase in torque is detected at the electro-traction drive. In the method, the term for measuring adaption is considerably shortened, and the measuring point is adapted at a running internal combustion engine and a stationary electro-traction drive.
Abstract:
A method sets a predefined position of a clutch actuator comprising a friction spring element. An activation path of the clutch actuator that actuates the clutch is predefined by a coupling torque via a coupling characteristic curve, wherein the predefined position (zo, zu) to be assumed by the clutch actuator is set by a closed-loop controller. To enable the predefined position of the clutch actuator to be set precisely without using additional energy, the predefined position (zo, zu) is corrected by a turning back value (ro, ru) of the friction spring element and the corrected position (zo+ro; zu−ru) of the clutch actuator is approached by the closed-loop controller. After reaching the corrected position (zo+ro; zu−ru) the closed-loop controller is switched off by dissipating the potential energy stored in the friction spring element.
Abstract:
A method determines the travel of a clutch in a hydraulic clutch-actuation system. A hydraulic signal which extends between a transmitting end and a receiving end is acted upon by an acoustic signal for the generation of a wave packet. The acoustic signal on the transmitting end of the clutch-actuation system is fed into the hydraulic fluid, a wave packet generated by the acoustic signal on the receiving end is reflected back to the transmitting end, a running time of the transmitted and reflected wave packet on the transmitting end is evaluated to determine the coupling travel.
Abstract:
A method for determining a measuring point of a hybrid decoupler of a hybrid vehicle, which is operated by a hydrostatic clutch actuator, with the hybrid decoupler coupling or decoupling an internal combustion engine and an electro-traction drive. The measuring point is determined by a slow operation of the hybrid decoupler, starting from a position of the hybrid decoupler which it assumes in the idle state, when a defined increase in torque is detected at the electro-traction drive. In the method, the term for measuring adaption is considerably shortened, and the measuring point is adapted at a running internal combustion engine and a stationary electro-traction drive.
Abstract:
A hydrostatically operated clutch system having a hydrostatic clutch actuator for hydrostatically operating a clutch, in particular a pulse separation clutch of a hybrid drive, such that the hydrostatic clutch actuator is combined with a valve arrangement which is to be opened actively and enables the clutch to be engaged rapidly.
Abstract:
A method is provided for controlling a hydraulic control device which can actuate a torque device and includes a first actuating element configured to be acted upon by a first fluid pressure in a first fluid line and configured to actuate the torque device; a system pressure line hydraulically connected to the first fluid line and having a system pressure; a first valve element located between the first fluid line and the system pressure line and configured to the first fluid pressure via the system pressure; and a supply element configured to provide the system pressure and being hydraulically connected to the system pressure line. The method includes setting first fluid pressure based on a predetermined target torque value, and setting the system pressure above the first fluid pressure by a pressure difference based on a pressure control value.
Abstract:
A method for determining an actuator path of a hydraulic clutch actuator, includes measuring a first temperature of the hydraulic clutch actuator with a first temperature sensor, measuring a second temperature of the hydraulic clutch actuator with a second temperature sensor, calculating a first temperature difference between the first temperature and the second temperature, using the first temperature or the second temperature as a clutch actuator temperature to determine a compensation value of the actuator path when the first temperature difference is less than a threshold value, and modifying the actuator path using the compensation value. In an example embodiment, the first temperature sensor measures a one of a circuit board temperature, an angle sensor temperature or a pressure sensor temperature, and the second temperature sensor measures another one of the circuit board temperature, the angle sensor temperature or the pressure sensor temperature.
Abstract:
A hydrostatically operated clutch system having a hydrostatic clutch actuator for hydrostatically operating a clutch, in particular a pulse separation clutch of a hybrid drive, such that the hydrostatic clutch actuator is combined with a valve arrangement which is to be opened actively and enables the clutch to be engaged rapidly.