Abstract:
A control circuit is provided. The control circuit includes a load switch, and a controller configured to transfer a turn-on signal which is increased step by step to the load switch, and perform a soft start operation which turns on the load switch. In response to the load switch being turned on, the control circuit restricts an inrush current flowing in the load switch.
Abstract:
Provided are a display system including a plurality of display apparatuses and a control method of the same. The display system including a plurality of display apparatuses comprises a first display apparatus configured to display an image to constitute a multi-screen, and receive power from a single power source; and a second display apparatus configured to display an image to constitute the multi-screen, and receive power from the single power source, wherein the second display apparatus starts operation after the first display apparatus enters a normal driving state.
Abstract:
A semiconductor device is provided. The semiconductor device may include a frame portion on which at least one semiconductor chip is arranged; a plurality of leads electrically connected to the semiconductor chip; and a mold portion formed on the frame portion to surround a part of the frame portion on which the semiconductor chip and the plurality of leads are arranged, wherein a gap between closest portions of the respective leads is at least 2.9 mm.
Abstract:
A display apparatus including: a display; a driver including an amplifier configured to detect a current of the display and to generate a constant current control signal, and a transistor configured to adjust the current supplied to the display in accordance an output voltage of the amplifier; and a controller configured to monitor the current of the display and a dropout voltage of the transistor, and control the amplifier so that a pulse width modulation (PWM) duty ratio is decreased in response to the dropout voltage being equal to or higher than a reference voltage.
Abstract:
An electronic apparatus includes a system portion configured to operate with a received voltage, and a power supply including a pulse width modulation (PWM) generator to generate a PWM signal, a converter to transfer voltage from a primary side to a secondary side in accordance with an output voltage of the PWM generator, and an output portion to supply voltage at the secondary side as standby voltage to the system portion, the PWM generator receives feedback on the standby voltage at the secondary side of the converter, the PWM signal is turned on/off in accordance with levels of the standby voltage at the secondary side, and voltage being supplied to components, except, when the PWM signal is turned off, voltage at the secondary side is only supplied to a component that monitors the feedback of the standby voltage.
Abstract:
A resonant converter, a power supply and a power controlling method thereof are provided. The power supply includes a resonant converter which includes a square wave generator configured to alternately turn on and off first and second switches according to a frequency to generate a square wave, a resonant wave generator configured to generate a resonant wave corresponding to the square wave and a rectifier configured to output a voltage corresponding to the resonant wave; and a controller configured to control a frequency modulation of the resonant converter, wherein the controller includes a variable switching circuit configured to increase the frequency of the resonant converter in response to the resonant converter entering a capacitive mode.
Abstract:
A backlight unit, the backlight unit including a light-emitting diode (LED) module; a switching element connected to the LED module; and a controller configured to supply a driving voltage to the LED module, control a switching operation of the switching element, provide a constant current to the LED module, sense an operational error in the switching element, and control the driving voltage of the LED module in response to the sensed operational error.