Abstract:
An ultraviolet curable transfer coating can comprise: a multifunctional acrylate oligomer; an acrylate monomer; and a photoinitiator; wherein the ultraviolet curable transfer coating includes a total weight, wherein 30% to 80% of the total weight comprises the multifunctional acrylate oligomer, wherein 15% to 65% of the total weight comprises the acrylate monomer, and wherein 3% to 7% of the total weight comprises the photoinitiator.
Abstract:
A method of thermoforming an article from an integrated transparent conductive film, comprising: applying an ultraviolet curable transfer coating to a first surface of a recipient substrate or to a first surface of a donor substrate, wherein the first surface of the donor substrate includes a conductive coating coupled thereto; pressing the first surface of the recipient substrate and the first surface of the donor substrate together to form a stack; heating the stack and activating the ultraviolet curable transfer coating with an ultraviolet radiation source; removing the donor substrate from the stack leaving a transparent conductive layer, wherein the ultraviolet curable transfer coating remains adhered to the first surface of the recipient substrate and to the conductive coating; laser etching an electrical circuit onto a transparent conductive layer second surface to form an integrated transparent conductive film; and thermoforming the integrated transparent conductive film to form the article.
Abstract:
A method of thermoforming an article from an integrated transparent conductive film includes heating the integrated transparent conductive film to a formable temperature in a mold, wherein the integrated transparent conductive film comprises a substrate comprising a transparent thermoplastic material, wherein the substrate includes a substrate first surface and a substrate second surface; a transparent conductive layer disposed adjacent to the substrate, wherein the transparent conductive layer includes a transparent conductive layer first surfaced disposed on the substrate first surface; and an electrical circuit etched onto a transparent conductive layer second surface; thermoforming the integrated transparent conductive film to the article comprising the mold shape; cooling the formed article; and removing the formed article form the mold; wherein the formed article has a functional electrical circuit after thermoforming.
Abstract:
An integrated conductive film can comprise: a first substrate including a first surface and a second surface, wherein the first substrate comprises a first polymer; a second substrate coupled to the second surface of the first substrate, wherein the second substrate comprises a second polymer, and wherein the chemical composition of the first polymer is different from the chemical composition of the second polymer; a transfer resin disposed adjacent to the first surface of the first substrate; a conductive coating disposed adjacent to the transfer resin, and wherein a change in electrical resistance of the integrated conductive film is less than or equal to 1 ohm when the film is bent to a bend radius of less than or equal to 126 millimeters as per ASTM D5023.