摘要:
A slew rate control circuit to control output slew rate according to a programmable reference signal. A slew rate control circuit limits the slew rate of a plurality output buffers according to a signal received from a programmable slew rate control reference.
摘要:
A user configurable circuit contains clock logic, a switching element and a data path circuit. Input data is received in the switching element, and the switching element and the data path circuit constitute the entire data path for the circuit. A plurality of user configurable inputs are received to configure the circuit for a particular user application. The clock logic and the switching element implement a logic function that is configurable by the user configurable inputs. The logic function is pre-processed in the clock logic so that minimal delay occurs in the data path. In addition, the propagation delay through the switching element and the register is independent of the user configurable inputs. The user configurable circuit of the present invention has application for use as a macro cell for a programmable logic device permitting the user to configure the circuit as a D-type flip-flop, a T-type flip-flop. In addition, the user selects the polarity for the output circuit.
摘要:
A user configurable circuit contains clock logic, a switching element and a data path circuit. Input data is received in the switching element, and the switching element and the data path circuit constitute the entire data path for the circuit. A plurality of user configurable inputs are received to configure the circuit for a particular user application. The clock logic and the switching element implement a logic function that is configurable by the user configurable inputs. The logic function is pre-processed in the clock logic so that minimal delay occurs in the data path. In addition, the propagation delay through the switching element and the register is independent of the user configurable inputs. The user configurable circuit of the present invention has application for use as a macro cell for a programmable logic device permitting the user to configure the circuit as a D-type flip-flop, a T-type flip-flop. In addition, the user selects the polarity for the output circuit.
摘要:
A user configurable circuit contains clock logic, a switching element and a data path circuit. Input data is received in the switching element, and the switching element and the data path circuit constitute the entire data path for the circuit. A plurality of user configurable inputs are received to configure the circuit for a particular user application. The clock logic and the switching element implement a logic function that is configurable by the user configurable inputs. The logic function is pre-processed in the clock logic so that minimal delay occurs in the data path. In addition, the propagation delay through the switching element and the register is independent of the user configurable inputs. The user configurable circuit of the present invention has application for use as a macro cell for a programmable logic device permitting the user to configure the circuit as a D-type flip-flop, a T-type flip-flop. In addition, the user selects the polarity for the output circuit.
摘要:
Integrated circuits are provided that have volatile memory elements. The memory elements produce output signals. The integrated circuits may be programmable logic device integrated circuits containing programmable core logic including transistors with gates. The core logic is powered using a core logic power supply level defined by a core logic positive power supply voltage and a core logic ground voltage. When loaded with configuration data, the memory elements produce output signals that are applied to the gates of the transistors in the core logic to customize the programmable logic device. The memory elements are powered with a memory element power supply level defined by a memory element positive power supply voltage and a memory element ground power supply voltage. The memory element power supply level is elevated with respect to the core logic power supply level.
摘要:
A low-power low-voltage buffer with a half-latch is provided. The half-latch buffer design may provide increased speed without dramatically increasing power consumption.
摘要:
One embodiment relates to a buffered transistor device. The device includes a buffered vertical fin-shaped structure formed in a semiconductor substrate. The vertical fin-shaped structure includes at least an upper semiconductor layer, a buffer region, and at least part of a well region. The buffer region has a first doping polarity, and the well region has a second doping polarity which is opposite to the first doping polarity. At least one p-n junction that at least partially covers a horizontal cross section of the vertical fin-shaped structure is formed between the buffer and well regions. Other embodiments, aspects, and features are also disclosed.
摘要:
Integrated circuits are provided that have memory elements. The memory elements produce output signals. The integrated circuits may be programmable logic device integrated circuits containing programmable logic including transistors with gates. When loaded with configuration data, the memory elements produce output signals that are applied to the gates of the transistors in the programmable logic device to customize the programmable logic. To ensure that the transistors in the programmable logic are turned on properly, the memory elements are powered with an elevated power supply level during normal device operation. During data loading operations, the power supply level for the memory elements is reduced. Reducing the memory element power supply level during loading increases the write margin for the memory elements.
摘要:
Integrated circuits are provided that have volatile memory elements. The memory elements produce output signals. The integrated circuits may be programmable logic device integrated circuits containing programmable core logic including transistors with gates. The core logic is powered using a core logic power supply level defined by a core logic positive power supply voltage and a core logic ground voltage. When loaded with configuration data, the memory elements produce output signals that are applied to the gates of the transistors in the core logic to customize the programmable logic device. The memory elements are powered with a memory element power supply level defined by a memory element positive power supply voltage and a memory element ground power supply voltage. The memory element power supply level is elevated with respect to the core logic power supply level.
摘要:
Integrated circuits may include memory elements that are provided with voltage overstress protection. One suitable arrangement of a memory cell may include a latch with two cross-coupled inverters. Each of the two cross-coupled inverters may be coupled between first and second power supply lines and may include a transistor with a gate that is connected to a separate power supply line. Another suitable memory cell arrangement may include three cross-coupled circuits. Two of the three circuits may be powered by a first positive power supply line, while the remaining circuit may be powered by a second positive power supply line. These memory cells may be used to provide an elevated positive static control signal and a lowered ground static control signal to a corresponding pass gate. These memory cells may include access transistors and read buffer circuits that are used during read/write operations.