Abstract:
Provided are a crucible for vapor deposition, a vapor deposition apparatus and a vapor deposition method capable of detecting a film formation rate using a sensor in vapor deposition by proximity vapor deposition. The crucible according to the present invention includes a storage section that stores a vapor deposition source, a first guide passage that guides a vaporized material emitted from the vapor deposition source toward a substrate to be treated, a wall section for defining the first guide passage and a second guide passage that diverges from a middle part of the first guide passage, penetrates the wall section and communicates with the outside.
Abstract:
In order to provide an organic electroluminescent light-emitting device with less uneven brightness, which can be manufactured at low cost, a plurality of ribbon-like organic electroluminescent elements are connected to wires, which are connected to electrode terminals for energization at specific locations in a terminal region and mounted on a base material which has a substantially plate-like shape.
Abstract:
An organic EL device manufacturing method includes a vapor deposition step of supplying a substrate, and while moving the substrate with a side thereof, on which an electrode layer is not provided, in contact with a surface of a can roller that rotates, discharging an evaporated organic layer forming material from a nozzle of a vapor deposition source to form an organic layer over a side of the substrate on which the electrode layer is provided, wherein the vapor deposition step is performed while, using a distance measuring section capable of measuring a first distance to the substrate supported by the can roller, and a position adjusting section capable of adjusting a second distance between the nozzle of the vapor deposition source and a surface of the substrate, control is performed by the position adjusting section so that the second distance is constant.
Abstract:
Provided is a method for manufacturing an organic EL device, including: a vapor deposition step of forming an organic layer over a substrate moving relative to a nozzle by discharging a vaporized organic layer-forming material through the nozzle. The vapor deposition step is performed so that a light emitting region formed of the organic layer and having a width A (mm) in a direction perpendicular to a direction in which the substrate is moving is formed, and so that W≧A+2×h (where h≦5 mm) is satisfied, where a length of an opening of the nozzle in the direction perpendicular to the direction in which the substrate is moving is denoted by W (mm), and a distance between the opening and the substrate is denoted by h (mm).
Abstract translation:本发明提供一种制造有机EL器件的方法,包括:蒸镀步骤,通过经由喷嘴排出蒸发的有机层形成材料,在相对于喷嘴移动的基板上形成有机层。 进行气相沉积步骤,使得形成有机层形成的发光区域,并且在与基板移动方向垂直的方向上形成宽度A(mm),从而W> = A + 2 ×h(其中h≤5mm),其中喷嘴在与基板移动方向垂直的方向上的开口长度用W(mm)表示,并且开口与 衬底由h(mm)表示。
Abstract:
Provided is a method for manufacturing an organic EL device, including: a vapor deposition step of forming an organic layer over a substrate moving relative to a nozzle by discharging a vaporized organic layer-forming material through the nozzle. The vapor deposition step is performed so that a light emitting region formed of the organic layer and having a width A (mm) in a direction perpendicular to a direction in which the substrate is moving is formed, and so that W≧A+2×h (where h≦5 mm) is satisfied, where a length of an opening of the nozzle in the direction perpendicular to the direction in which the substrate is moving is denoted by W (mm), and a distance between the opening and the substrate is denoted by h (mm).
Abstract:
A method is provided for producing an organic EL element having excellent electric properties in a relatively low cost. The method includes the steps of using a vapor deposition apparatus 7 including a first vapor deposition source 721 including a first organic layer forming material and a second vapor deposition source 722 including a second organic layer forming material; forming a first organic layer on a surface to be processed of a substrate 73 by colliding the first organic layer forming material vaporized from the first vapor deposition source 721 with the surface to be processed of the substrate 73; and thereafter, forming a mixed layer by colliding the vaporized second organic layer forming material from the second vapor deposition source 722 with the first organic layer in a migration state of the first organic layer forming material.
Abstract:
In order to provide an organic electroluminescent light-emitting device with less uneven brightness, which can be manufactured at low cost, a plurality of ribbon-like organic electroluminescent elements are connected to wires, which are connected to electrode terminals for energization at specific locations in a terminal region and mounted on a base material which has a substantially plate-like shape.
Abstract:
There is provided an organic light emitting diode, wherein in a transparent substrate used therein, the length of a side (upper side) on a transparent electrode layer side is shorter than the length of a side (lower side) on an emission side in a cross section parallel to a short side. Ends of the side (upper side) on the transparent electrode layer side and ends of the side (lower side) on the emission side are connected by straight lines or curved lines. Angles (α,β) formed by side surfaces of the transparent substrate and the side (lower side) on the emission side are larger than 0° and smaller than 90°.