摘要:
In one embodiment of the invention, an apparatus for a juicer includes: a cutting chamber; a squeezing chamber adjacent to the cutting chamber; wherein the cutting chamber includes a cutter; and wherein the squeezing chamber includes a press. In another embodiment of the invention, a method of assembling a juicer includes: providing a cutting chamber; placing at least one cutter in the cutting chamber; providing a squeezing chamber in a position adjacent to the cutting chamber; and providing a press in the squeezing chamber.
摘要:
In one embodiment of the invention, an apparatus for a juicer includes: a cutting chamber; a squeezing chamber adjacent to the cutting chamber; wherein the cutting chamber includes a cutter; and wherein the squeezing chamber includes a press. In another embodiment of the invention, a method of assembling a juicer includes: providing a cutting chamber; placing at least one cutter in the cutting chamber; providing a squeezing chamber in a position adjacent to the cutting chamber; and providing a press in the squeezing chamber.
摘要:
Apparatus for quantitatively measuring the curvature and/or relative tilt of large surfaces wherein a small array of parallel laser beams, each separated by a known distance, reflect from the surface of a sample and fall upon a feedback controlled front-surface steering mirror to a detector that measures both the change in separation of the reflected beams and the spatial translation of the entire array on the detector. The sample surface is translated beneath or in front of the fixed laser array by means of a computer controlled stage or other apparatus to create a 1-dimensional line scan or 2-dimensional map of both bow and relative tilt of the sample surface. A computer-driven, feedback-controlled steering mirror compensates for varying sample tilt by precisely realigning the reflected laser array onto the detector as the sample is translated. The apparatus also utilizes a laser with intensity feedback control to continuously optimize the reflected laser power for varying surface reflectivity as the sample is translated. This combination provides a means to quantitatively measure curvature and relative tilt of sample areas much larger than the actual laser beam array size.
摘要:
The invention is an optical method and apparatus for measuring the temperature of semiconductor substrates in real-time, during thin film growth and wafer processing. Utilizing the nearly linear dependence of the interband optical absorption edge on temperature, the present method and apparatus result in highly accurate measurement of the absorption edge in diffuse reflectance and transmission geometry, in real time, with sufficient accuracy and sensitivity to enable closed loop temperature control of wafers during film growth and processing. The apparatus operates across a wide range of temperatures covering all of the required range for common semiconductor substrates.
摘要:
The invention is an optical method and apparatus for measuring the temperature of semiconductor substrates in real-time, during thin film growth and wafer processing. Utilizing the nearly linear dependence of the interband optical absorption edge on temperature, the present method and apparatus result in highly accurate measurement of the absorption edge in diffuse reflectance and transmission geometry, in real time, with sufficient accuracy and sensitivity to enable closed loop temperature control of wafers during film growth and processing. The apparatus operates across a wide range of temperatures covering all of the required range for common semiconductor substrates.
摘要:
The present invention relates to biological sensors. In particular, the present invention relates to the use of remotely driven nonlinear rotation of particles (e.g., magnetic particles) for detection of cells such as microorganisms (e.g., bacteria and viruses). The present invention further relates to the use of remotely driven nonlinear rotation of particles for measurement of physical properties of a solution (e.g., viscosity).
摘要:
The invention is an optical method and apparatus for measuring the temperature of semiconductor substrates in real-time, during thin film growth and wafer processing. Utilizing the nearly linear dependence of the interband optical absorption edge on temperature, the present method and apparatus result in highly accurate measurement of the absorption edge in diffuse reflectance and transmission geometry, in real time, with sufficient accuracy and sensitivity to enable closed loop temperature control of wafers during film growth and processing. The apparatus operates across a wide range of temperatures covering all of the required range for common semiconductor substrates.
摘要:
The invention is an optical method and apparatus for measuring the temperature of semiconductor substrates in real-time, during thin film growth and wafer processing. Utilizing the nearly linear dependence of the interband optical absorption edge on temperature, the present method and apparatus result in highly accurate measurement of the absorption edge in diffuse reflectance and transmission geometry, in real time, with sufficient accuracy and sensitivity to enable closed loop temperature control of wafers during film growth and processing. The apparatus operates across a wide range of temperatures covering all of the required range for common semiconductor substrates.
摘要:
Described herein are various methods, devices and systems for performing asynchronous magnetic bead rotation (AMBR) to detect and monitor cellular growth and/or behavior. Cluster rotation of magnetic particles for AMBR is descried. In particular, described herein are systems for the parallel analysis of multiple wells of a sample plate. Also described herein are methods for controlling the illumination and imaging of rotating magnetic particles.
摘要:
The present invention relates to biological sensors. In particular, the present invention relates to the use of remotely driven nonlinear rotation of particles (e.g., magnetic particles) for detection of cells such as microorganisms (e.g., bacteria and viruses). The present invention further relates to the use of remotely driven nonlinear rotation of particles for measurement of physical properties of a solution (e.g., viscosity).