Abstract:
An E-fuse and a method for fabricating an E-fuse integrating polysilicon resistor masks, and a design structure on which the subject E-fuse circuit resides are provided. The E-fuse includes a polysilicon layer defining a fuse shape including a cathode, an anode, and a fuse neck connected between the cathode and the anode silicide formation. A silicide formation is formed on the polysilicon layer with an unsilicided portion extending over a portion of the cathode adjacent the fuse neck. The unsilicided portion substantially prevents current flow in the silicide formation region of the cathode, with electromigration occurring in the fuse neck during fuse programming. The unsilicided portion has a substantially lower series resistance than the series resistance of the fuse neck.
Abstract:
A finFET, a method of fabricating the finFET and a design structure of the finFET. The method includes: forming a silicon fin on a top surface of a silicon substrate; forming a gate dielectric on opposite sidewalls of the fin; forming a gate electrode over a channel region of the fin, the gate electrode in direct physical contact with the gate dielectric layer on the opposite sidewalls of the fin; forming a first source/drain in the fin on a first side of the channel region and forming a second source/drain in the fin on a second side of the channel region; removing a portion of the substrate from under at least a portion of the first and second source/drains to create a void; and filling the void with a dielectric material. The finFET includes a body contact between the silicon body of the finFET and the substrate.
Abstract:
An E-fuse and a method for fabricating an E-fuse are provided integrating polysilicon resistor masks. The E-fuse includes a polysilicon layer defining a fuse shape including a cathode, an anode, and a fuse neck connected between the cathode and the anode silicide formation. A silicide formation is formed on the polysilicon layer with an unsilicided portion extending over a portion of the cathode adjacent the fuse neck. The unsilicided portion substantially prevents current flow in the silicide formation region of the cathode, with electromigration occurring in the fuse neck during fuse programming. The unsilicided portion has a substantially lower series resistance than the series resistance of the fuse neck.
Abstract:
Electrically programmable fuse structures for an integrated circuit and methods of fabrication thereof are presented, wherein the electrically programmable fuse has a first terminal portion and a second terminal portion interconnected by a fuse element. The first terminal portion and the second terminal portion reside at different heights relative to a supporting surface of the fuse structure, and the interconnecting fuse element transitions between the different heights of the first terminal portion and the second terminal portion. The first and second terminal portions are oriented parallel to the supporting surface, while the fuse element includes a portion oriented orthogonal to the supporting surface, and includes at least one right angle bend where transitioning from at least one of the first and second terminal portions to the orthogonal oriented portion of the fuse element.
Abstract:
In a first aspect, a first method is provided for semiconductor device manufacturing. The first method includes the steps of (1) forming a first side of a fin of a fin field effect transistor (FinFET); (2) processing the first side of the fin; and (3) forming a second side of the fin while supporting the first side of the fin. Numerous other aspects are provided.
Abstract:
In a first aspect, a first method is provided for semiconductor device manufacturing. The first method includes the steps of (1) forming a first side of a fin of a fin field effect transistor (FinFET); (2) processing the first side of the fin; and (3) forming a second side of the fin while supporting the first side of the fin. Numerous other aspects are provided.
Abstract:
An apparatus and method are disclosed for an improved semiconductor interconnect scheme using a simplified process. In an embodiment of the apparatus, a polysilicon shape is formed on a silicon area. The polysilicon shape is created having a bridging vertex. When a spacer is created on the polysilicon shape, the spacer width is formed to be small enough near the bridging vertex to allow a silicide bridge to form that creates an electrical coupling between the silicon area and the bridging vertex. Semiconductor devices and circuits are created using the improved semiconductor interconnect scheme using the simplified process.
Abstract:
A method, apparatus, and computer program product are provided for implementing an enhanced DRAM interface checking. An interface check mode enables interface checking using a refresh command for a DRAM. A predefined address pattern is provided for the interface address inputs during a refresh command cycle. Interface address inputs are checked for a proper value being applied and an error is signaled for unexpected results. An extended test mode includes further testing during a cycle after the refresh command cycle. Then command inputs also are checked for a proper value being applied and an error is signaled for unexpected results.
Abstract:
Verification operations are utilized to effectively verify multiple associated write operations. A verification operation may be initiated after the issuance of a plurality of write operations that initiate the storage of data to a memory storage device, and may be configured to verify only a subset of the data written to the memory storage device by the plurality of write operations. As a result, verification operations are not required to be performed after each write operation, and consequently, the number of verification operations, and thus the processing and communication bandwidth consumed thereby, can be substantially reduced.
Abstract:
An apparatus and method are disclosed for an improved semiconductor interconnect scheme using a simplified process. In an embodiment of the apparatus, a polysilicon shape is formed on a silicon area. The polysilicon shape is created having a bridging vertex. When a spacer is created on the polysilicon shape, the spacer width is formed to be small enough near the bridging vertex to allow a silicide bridge to form that creates an electrical coupling between the silicon area and the bridging vertex. Semiconductor devices and circuits are created using the improved semiconductor interconnect scheme using the simplified process.