Abstract:
A method is disclosed for creating a logic integrated circuit cell from an original logic integrated circuit gate. The method includes combining the original logic integrated circuit cell with a second circuit which takes as input a complement of inputs of the original logic integrated circuit cell and provides as output complements of the output of the original logic integrated circuit cell. The method further includes connecting the combined logic integrated circuit cells, where the outputs of the combined integrated circuit cells provide the inputs for other combined circuit cells such that, when the output of the original logic integrated circuit from a first combined logic integrated circuit cell is connected as input to a second combined logic integrated circuit cell, then the output of the second circuit in the first combined logic integrated circuit cell is always also connected to the second combined logic integrated circuit cell serving as the inverse of the input signals that come from the original logic integrated circuit cell.
Abstract:
A method is disclosed for creating a logic integrated circuit cell from an original logic integrated circuit gate. The method includes combining the original logic integrated circuit cell with a second circuit which takes as input a complement of inputs of the original logic integrated circuit cell and provides as output complements of the output of the original logic integrated circuit cell. The method further includes connecting the combined logic integrated circuit cells, where the outputs of the combined integrated circuit cells provide the inputs for other combined circuit cells such that, when the output of the original logic integrated circuit from a first combined logic integrated circuit cell is connected as input to a second combined logic integrated circuit cell, then the output of the second circuit in the first combined logic integrated circuit cell is always also connected to the second combined logic integrated circuit cell serving as the inverse of the input signals that come from the original logic integrated circuit cell.
Abstract:
This invention comprises a layout method to effectively protect logic circuits against soft errors (non-destructive errors) and circuit cells, with layout, which are protected against soft errors. In particular, the method protects against cases where multiple nodes in circuit are affected by a single event. These events lead to multiple errors in the circuit, and while several methods exist to deal with single node errors, multiple node errors are very hard to deal with using any currently existing protection methods. The method is particularly useful for CMOS based logic circuits in modem technologies (.ltoreq.90 nm), where the occurrence of multiple node pulses becomes high (due to the high integration level). It uses a unique layout configuration, which makes the circuits protected against single event generated soft-errors.