Self-Energized Wireless Sensor and Method Using Magnetic Field Communications
    1.
    发明申请
    Self-Energized Wireless Sensor and Method Using Magnetic Field Communications 有权
    自励无线传感器和使用磁场通信的方法

    公开(公告)号:US20130017783A1

    公开(公告)日:2013-01-17

    申请号:US13548813

    申请日:2012-07-13

    CPC classification number: H04B5/0031 H04B5/0075

    Abstract: Manufacturing processes monitor forces or pressures within a machine. Metal within machines affect wireless communications within the machines for reporting monitored data. An embodiment of the present invention is a sensor that provides wireless communications unaffected by metals and with less electrical noise than slip rings. An embodiment can monitor manufacturing processes, such as by employing a piezoelectric transducer to measure forces or pressures in a machine and generate an electrical signal representing, for example, forces measured by the piezoelectric transducer. A threshold modulator circuit converts the electrical signal into a series of electrical pulses, which can be transmitted as a corresponding series of magnetic field pulses to a wireless receiver. The receiver reconstructs the original electrical signal, thereby enabling a receiver system to determine physical activities in the machine. The embodiment may be self-powered through use of power generated by the piezoelectric transducer.

    Abstract translation: 制造过程监控机器内的力或压力。 机器内部的金属影响机器内的无线通信,用于报告监控数据。 本发明的实施例是一种传感器,其提供不受金属影响并且具有比滑环更少的电气噪声的无线通信。 实施例可以监视制造过程,例如通过使用压电换能器来测量机器中的力或压力并产生表示例如由压电换能器测量的力的电信号。 阈值调制器电路将电信号转换成一系列电脉冲,其可以作为对应的一系列磁场脉冲发送到无线接收器。 接收机重构原始电信号,从而使得接收机系统能够确定机器中的物理活动。 该实施例可以通过使用由压电换能器产生的电力而自动供电。

    Self-energized wireless sensor and method using magnetic field communications
    2.
    发明授权
    Self-energized wireless sensor and method using magnetic field communications 有权
    自励无线传感器和使用磁场通信的方法

    公开(公告)号:US08971801B2

    公开(公告)日:2015-03-03

    申请号:US13548813

    申请日:2012-07-13

    CPC classification number: H04B5/0031 H04B5/0075

    Abstract: Manufacturing processes monitor forces or pressures within a machine. Metal within machines affect wireless communications within the machines for reporting monitored data. An embodiment of the present invention is a sensor that provides wireless communications unaffected by metals and with less electrical noise than slip rings. An embodiment can monitor manufacturing processes, such as by employing a piezoelectric transducer to measure forces or pressures in a machine and generate an electrical signal representing, for example, forces measured by the piezoelectric transducer. A threshold modulator circuit converts the electrical signal into a series of electrical pulses, which can be transmitted as a corresponding series of magnetic field pulses to a wireless receiver. The receiver reconstructs the original electrical signal, thereby enabling a receiver system to determine physical activities in the machine. The embodiment may be self-powered through use of power generated by the piezoelectric transducer.

    Abstract translation: 制造过程监控机器内的力或压力。 机器内部的金属影响机器内的无线通信,用于报告监控数据。 本发明的实施例是一种传感器,其提供不受金属影响并且具有比滑环更少的电气噪声的无线通信。 实施例可以监视制造过程,例如通过使用压电换能器来测量机器中的力或压力并产生表示例如由压电换能器测量的力的电信号。 阈值调制器电路将电信号转换成一系列电脉冲,其可以作为对应的一系列磁场脉冲发送到无线接收器。 接收机重构原始电信号,从而使得接收机系统能够确定机器中的物理活动。 该实施例可以通过使用由压电换能器产生的电力而自动供电。

    System and method for load sensing using piezoelectric effect
    3.
    发明授权
    System and method for load sensing using piezoelectric effect 失效
    使用压电效应的负载传感系统和方法

    公开(公告)号:US07104139B2

    公开(公告)日:2006-09-12

    申请号:US10865742

    申请日:2004-06-10

    CPC classification number: G01G3/13

    Abstract: System and method for measuring static load by using a piezoelectric load sensor with a feedback technique to compensate for the signal loss due to charge leakage, and therefore ensures measurement accuracy. The system is integrated with other structure, objects and devices to measure static loads applied to a mechanical shaft, in an on-line, in-process, quasi real-time fashion. The system can be used to measure static load and thus oversee an entire machine system or a manufacturing process.

    Abstract translation: 通过使用具有反馈技术的压电负载传感器来测量静态负载的系统和方法,以补偿由于电荷泄漏引起的信号损失,因此确保测量精度。 该系统与其他结构,对象和设备集成,以在线,在线,准实时方式测量施加到机械轴的静态负载。 该系统可用于测量静态负载,从而监督整个机器系统或制造过程。

    Multiple excitation capacitance polling for enhanced electronic capacitance tomography
    4.
    发明授权
    Multiple excitation capacitance polling for enhanced electronic capacitance tomography 有权
    用于增强电子电容层析成像的多次激励电容轮询

    公开(公告)号:US08762084B2

    公开(公告)日:2014-06-24

    申请号:US12826314

    申请日:2010-06-29

    CPC classification number: G01N27/228

    Abstract: Disclosed herein is a novel sensing technique, termed Multiple Excitation Capacitance Polling (MECaP), that improves the efficiency of Electrical Capacitance Tomography (ECT). Unlike traditional alternating current techniques, where excitation signal is applied to an electrode one at a time, MECaP involves simultaneously applying multiple excitation signals, in a progressively increasing fashion, to multiple electrodes on an ECT sensor. The received signals are filtered or otherwise decomposed (e.g., Fourier transformed) into different components, and the individual components are used to generate an image of the article or substance disposed between the electrodes. Because multiple capacitances can be simultaneously measured as a consequence, scanning with MECaP can significantly increase the image scanning speed. For example, scanning with MECaP may enable frames rates of tens of kHz for imaging dynamic processes such as engine combustion.

    Abstract translation: 本文公开了一种新颖的感测技术,称为多激发电容轮询(MECaP),其提高电容层析成像(ECT)的效率。 与传统的交流技术不同,其中激发信号一次一个地施加到电极上,MECaP包括以逐渐增加的方式同时向ECT传感器上的多个电极施加多个激励信号。 接收的信号被过滤或以其他方式分解(例如,傅立叶变换)到不同的部件中,并且各个部件用于产生设置在电极之间的物品或物质的图像。 因为可以同时测量多个电容,所以用MECaP扫描可以显着提高图像扫描速度。 例如,使用MECaP进行扫描可以使成像动态过程(如发动机燃烧)的数十kHz的帧速率。

    Method and system for multivariate remote monitoring of polymer processing
    5.
    发明授权
    Method and system for multivariate remote monitoring of polymer processing 有权
    聚合物加工多元远程监控方法与系统

    公开(公告)号:US09446544B2

    公开(公告)日:2016-09-20

    申请号:US13538475

    申请日:2012-06-29

    Abstract: In an injection molding process, it can be difficult to detect, in real time, process control variables such as pressure and temperature. Traditional temperature detectors and pressure sensors can be difficult to place in or near a mold cavity. An example embodiment of the present invention includes a self-powered multivariate sensor and uses acoustic transmission. The sensor may employ an infra-red thermal detector and pressure sensor and transmit coded representations of measurements acoustically via a body of the mold. From the temperature and pressure, melt velocity and melt viscosity of a compound in the mold can be determined with a high degree of accuracy by a processor internal to or external from the sensor. The example embodiment maintains structural integrity of the mold, provides a wireless self-powered sensor, and makes available sensing of properties of the viscous compound to enable injection molded parts production at a success rate exceeding 90%.

    Abstract translation: 在注射成型过程中,可能难以实时地检测诸如压力和温度的过程控制变量。 传统的温度检测器和压力传感器可能难以放置在模腔内或附近。 本发明的示例性实施例包括自供电的多变量传感器并且使用声学传播。 传感器可以使用红外热检测器和压力传感器,并通过模具的主体声学地传输测量结果的编码表示。 从温度和压力来看,模具中化合物的熔体速度和熔融粘度可以通过传感器内部或外部的处理器以高精度确定。 该示例性实施例保持模具的结构完整性,提供无线自供电传感器,并且使粘性化合物的性质可用于感测,以使得成型率超过90%的注模部件生产。

    Method and System for Testing Operational Integrity of a Drilling Rig
    6.
    发明申请
    Method and System for Testing Operational Integrity of a Drilling Rig 审中-公开
    钻机操作完整性测试方法与系统

    公开(公告)号:US20150160101A1

    公开(公告)日:2015-06-11

    申请号:US14403994

    申请日:2012-05-31

    CPC classification number: G01M99/008 E21B41/00 G01M13/028 G01M13/045

    Abstract: A method of testing and monitoring operational integrity of a drilling rig is described. The method includes operating the drilling rig in a non-drilling mode at a sequence of different phases including an acceleration phase, a constant speed phase, and a decelerating phase, collecting sensor data associated with one or more components of the drilling rig while the drilling is operated in the non-drilling mode at the sequence of different phases, and analyzing the collected sensor data to determine the operational integrity of the drilling rig. The analyzed data, together with previously stored historical data is used to estimate the life expectancy of the rig and monitor, plan, control, or report maintenance activity for the drilling rig, top drive, or any other system.

    Abstract translation: 描述了一种测试和监测钻机操作完整性的方法。 该方法包括以不同阶段的序列操作钻机,包括加速阶段,恒速阶段和减速阶段,在钻探期间收集与钻机的一个或多个部件相关联的传感器数据 以不同阶段的顺序在非钻井模式下运行,并分析收集的传感器数据以确定钻机的操作完整性。 分析的数据以及以前存储的历史数据用于估计钻机的预期寿命,并监测,计划,控制或报告钻机,顶部驱动器或任何其他系统的维护活动。

    Method And System For Multivariate Remote Monitoring Of Polymer Processing
    7.
    发明申请
    Method And System For Multivariate Remote Monitoring Of Polymer Processing 有权
    聚合物加工多元远程监控方法与系统

    公开(公告)号:US20130030723A1

    公开(公告)日:2013-01-31

    申请号:US13538475

    申请日:2012-06-29

    Abstract: In an injection molding process, it can be difficult to detect, in real time, process control variables such as pressure and temperature. Traditional temperature detectors and pressure sensors can be difficult to place in or near a mold cavity. An example embodiment of the present invention includes a self-powered multivariate sensor and uses acoustic transmission. The sensor may employ an infra-red thermal detector and pressure sensor and transmit coded representations of measurements acoustically via a body of the mold. From the temperature and pressure, melt velocity and melt viscosity of a compound in the mold can be determined with a high degree of accuracy by a processor internal to or external from the sensor. The example embodiment maintains structural integrity of the mold, provides a wireless self-powered sensor, and makes available sensing of properties of the viscous compound to enable injection molded parts production at a success rate exceeding 90%.

    Abstract translation: 在注射成型过程中,可能难以实时地检测诸如压力和温度的过程控制变量。 传统的温度检测器和压力传感器可能难以放置在模腔内或附近。 本发明的示例性实施例包括自供电的多变量传感器并且使用声学传播。 传感器可以使用红外热检测器和压力传感器,并通过模具的主体声学地传输测量结果的编码表示。 从温度和压力来看,模具中化合物的熔体速度和熔融粘度可以通过传感器内部或外部的处理器以高精度确定。 该示例性实施例保持模具的结构完整性,提供无线自供电传感器,并且使粘性化合物的性质可用于感测,以使得成型率超过90%的注模部件生产。

    Multiple Excitation Capacitance Polling for Enhanced Electronic Capacitance Tomography
    9.
    发明申请
    Multiple Excitation Capacitance Polling for Enhanced Electronic Capacitance Tomography 有权
    多重激发电容轮询增强电子电容层析成像

    公开(公告)号:US20100332170A1

    公开(公告)日:2010-12-30

    申请号:US12826314

    申请日:2010-06-29

    CPC classification number: G01N27/228

    Abstract: Disclosed herein is a novel sensing technique, termed Multiple Excitation Capacitance Polling (MECaP), that improves the efficiency of Electrical Capacitance Tomography (ECT). Unlike traditional alternating current techniques, where excitation signal is applied to an electrode one at a time, MECaP involves simultaneously applying multiple excitation signals, in a progressively increasing fashion, to multiple electrodes on an ECT sensor. The received signals are filtered or otherwise decomposed (e.g., Fourier transformed) into different components, and the individual components are used to generate an image of the article or substance disposed between the electrodes. Because multiple capacitances can be simultaneously measured as a consequence, scanning with MECaP can significantly increase the image scanning speed. For example, scanning with MECaP may enable frames rates of tens of kHz for imaging dynamic processes such as engine combustion.

    Abstract translation: 本文公开了一种新颖的感测技术,称为多激发电容轮询(MECaP),其提高电容层析成像(ECT)的效率。 与传统的交流技术不同,其中激发信号一次一个地施加到电极上,MECaP包括以逐渐增加的方式同时向ECT传感器上的多个电极施加多个激励信号。 接收的信号被过滤或以其他方式分解(例如,傅立叶变换)到不同的部件中,并且各个部件用于产生设置在电极之间的物品或物质的图像。 因为可以同时测量多个电容,所以用MECaP扫描可以显着提高图像扫描速度。 例如,使用MECaP进行扫描可以使成像动态过程(如发动机燃烧)的数十kHz的帧速率。

    Multi-scale enveloping spectrogram signal processing for condition monitoring and the like
    10.
    发明授权
    Multi-scale enveloping spectrogram signal processing for condition monitoring and the like 失效
    用于状态监测的多尺度包络光谱图信号处理等

    公开(公告)号:US07602985B2

    公开(公告)日:2009-10-13

    申请号:US11521090

    申请日:2006-09-14

    CPC classification number: G06K9/00523 G01H1/06

    Abstract: A signal processing technique that decomposes complex, dynamically changing non-stationary signals from machine components such as bearings into different scales by means of a continuous wavelet transform. The envelope signal in each scale is then calculated from the modulus of the wavelet coefficients. Subsequently, Fourier transform is performed repetitively on the envelope of the signal at each scale, resulting in an “envelope spectrum” of the original signal at the various scales. The final output is a three-dimensional scale-frequency map that indicates the intensity and location of the defect-related frequency lines. The technique is generic in nature, and applicable not only to machine condition monitoring, but also to the health monitoring of a wide range of dynamic systems, including human beings.

    Abstract translation: 一种信号处理技术,其通过连续小波变换将复杂的,动态变化的非平稳信号从诸如轴承的机器部件分解成不同的尺度。 然后从小波系数的模数计算每个刻度中的包络信号。 随后,在每个刻度的信号的包络上重复执行傅里叶变换,从而产生各种尺度上原始信号的“包络谱”。 最终的输出是一个三维的比例 - 频率图,它指示与缺陷相关的频率线的强度和位置。 该技术本质上是通用的,不仅适用于机器状态监测,还适用于包括人类在内的广泛动态系统的健康监测。

Patent Agency Ranking