Abstract:
Bonded screens such as vehicle windscreens (1) bonded to a supporting frame (5) by homogeneous bonding material (6) are released by firstly arranging energy delivery means (9) adjacent the screen and subsequently transmitting energy from the delivery means through the screen thereby to effect release of the screen (1) from the frame (5) by either causing degradation of some of the homogeneous bonding material and/or cleavage or degradation of the screen material. The energy delivered may, for example, be ultrasonic or laser radiation, and is preferably arranged to be concentrated at a predetermined localized region to enhance the release mechanism.
Abstract:
A method of providing a body of material (14), having a thermal conductivity approximately equal to that of glass, with a sub-surface mark. A beam of laser radiation (12) to which the material (14) is substantially opaque is directed to surface of the body, so as to cause beam energy to be aborbed at the surface of the material in an amount sufficient to produce localised stresses within the body (14) at a location spaced from the surface without any detectable change at the surface, the localised stresses thus produced being normally invisible to the naked eye but capable of being rendered visible under polarised light.
Abstract:
A method and an apparatus for making a moving body of material (26). The method includes the steps of directing at the moving body a high energy density beam (46,58), concentrating the beam so as to produce an illuminated spot at a location on or within the moving body, and moving the spot in accordance with the resultant of two components of movement, the first component being equal to the velocity of the moving body and the second component being relative to the moving body, so as to create a mark of a predetermined shape. In a preferred embodiment, the apparatus includes at least one movable galvanometer mirror (68,70) capable of moving the spot in accordance with the resultant of the two components.
Abstract:
Glazing panels such as vehicle glazing panels bonded to a supporting frame are released by firstly arranging light energy delivery means adjacent the panel and subsequently transmitting light energy from the delivery means through the panel thereby to effect release of the panel from the frame. The light may be pulsed according to a predetermined regime and may be delivered by a discharge lamp having rapidly attenuating intensity. The mechanism of panel release may be by thermal degradation of the bonding material, cleavage of material at a surface of, or within the body of the panel, or a combination of such mechanisms.
Abstract:
At least one electric discharge lamp capable of generating a broadband output pulse of a range of wavelengths in the visible spectrum, the output pulse having a predetermined time interval and a predetermined total electrical energy input for the pulse, has a drive circuit for delivering energy pulses to the electrical discharge lamp, as well as a sensor for sensing an optical output from the discharge lamp; and a control mechanism for operating the drive circuit in response to variations in optical output detected by the sensor.
Abstract:
Vascular blemishes are reduced by directing pulsed laser radiation to converge toward the blemishes in a plurality of directions, each beam of radiation being derived from a primary radiation source or from a separate radiation source, thereby to cause selective thermolysis of blood vessels in the blemishes.
Abstract:
At least one electric discharge lamp capable of generating a broadband output pulse of a range of wavelengths in the visible spectrum, the output pulse having a predetermined time interval and a predetermined total electrical energy input for the pulse, has a drive circuit for delivering energy pulses to the electrical discharge lamp, as well as a sensor for sensing an optical output from the discharge lamp; and a control mechanism for operating the drive circuit in response to variations in optical output detected by the sensor.
Abstract:
Wrinkles are cosmetically removed from a superficial area of mammalian skin tissue having an epidermal layer, a basal layer, and a dermal layer, by irradiating the dermal layer through the basal layer, the irradiation being selected to be absorbed by a chromophore in the dermal layer such that collagen present in the dermal layer is heated, while the basal layer remains intact so as to substantially inhibit contact of the dermal layer with ambient air.
Abstract:
The apparatus comprises a removable coating formulation for a surface of a vertebrate animal body (such as an aqueous coating formulation); with at least two light-emitting diodes which can be secured to the surface by the formulation such that illumination therefrom can be directed towards tissue in the animal body. The light-emitting diodes are such that, when connected to an electrical power supply, they have an illumination power output substantially in the range causing photochemical effects in the animal tissue, and they are provided with a connection to an electrical power supply.
Abstract:
Vascular lesions are treated by using an apparatus which comprises a dye laser, one or more flashlamps, and at least one pulse generating circuit for driving the flashlamps, the pulse generating circuit arranged to produce driving current pulses having a risetime of less than 100 microseconds resulting in corresponding laser output pulses, having a risetime of less than 100 microseconds.