Abstract:
A method for controlling the temperature of at least one battery element, a battery, and a motor vehicle that has the battery includes specifying a temperature value, and determining the cool-down behavior of the at least one battery element beginning at a first temperature. A first point in time, at which the battery temperature will have reached or fallen below the temperature value, is determined by evaluating the cool-down behavior. Subsequently, a second point in time for a beginning of the charging or discharging of the at least one battery element is determined. If tmin
Abstract:
A battery includes at least one battery cell that has a housing with an electrode arrangement arranged therein. A first temperature sensor is arranged outside the battery cell housing, and a second temperature sensor is arranged inside the battery cell housing. The temperature dynamic of the second temperature sensor is higher than the temperature dynamic of the first temperature sensor. A motor vehicle includes the battery cell.
Abstract:
A method for controlling the temperature of at least one battery element, a battery, and a motor vehicle that has the battery includes specifying a temperature value, and determining the cool-down behavior of the at least one battery element beginning at a first temperature. A first point in time, at which the battery temperature will have reached or fallen below the temperature value, is determined by evaluating the cool-down behavior. Subsequently, a second point in time for a beginning of the charging or discharging of the at least one battery element is determined. If tmin
Abstract:
A cooling system for battery cells includes a housing that surrounds battery cells of a battery pack and an external cooling system. One side of the housing is connected to and configured to thermally interact with the external cooling system. The external cooling system is configured to enable a coolant to pass therethrough. The cooling system and the battery pack are arranged and configured such that the coolant cannot enter the housing even in the event of a leak.
Abstract:
A battery system includes a plurality of battery cells and a temperature-control element that is thermally conductively connected to the battery cells via a temperature-control surface. The temperature-control element has a temperature-control channel in an interior of the temperature-control element. The temperature-control channel is routed on the forward flow side via an inlet and on the return flow side via an outlet from the temperature-control element. A bypass is connected to the temperature-control channel via a dividing node and a merging node with the dividing node being arranged closer to the inlet than the merging node. A motor vehicle includes the battery system.
Abstract:
A lithium-ion battery cell includes a housing with an electrode arrangement and a temperature sensor that is arranged in the interior of the housing. The temperature sensor has an electro-thermal oscillator that converts a temperature into a frequency. A motor vehicle includes the lithium-ion battery cell.
Abstract:
A lithium-ion battery cell includes a housing with an electrode arrangement and a temperature sensor that is arranged in the interior of the housing. The temperature sensor has an electro-thermal oscillator that converts a temperature into a frequency. A motor vehicle includes the lithium-ion battery cell.
Abstract:
A battery includes at least one battery cell that has a housing with an electrode arrangement arranged therein. A first temperature sensor is arranged outside the battery cell housing, and a second temperature sensor is arranged inside the battery cell housing. The temperature dynamic of the second temperature sensor is higher than the temperature dynamic of the first temperature sensor. A motor vehicle includes the battery cell.
Abstract:
A battery module (19) having a number of electrically interconnected battery cells (10), wherein the individual battery cells (10) are temperature-controlled by means of a temperature control fluid (70). Between the battery cells (10), there extends a duct system (30, 62, 66, 68) through which the temperature control fluid (70) flows. The duct system (30, 62, 66, 68) is separated completely from a degassing system (16, 54) of the battery cells (10).
Abstract:
A battery module (19) having a number of electrically interconnected battery cells (10), wherein the individual battery cells (10) are temperature-controlled by means of a temperature control fluid (70). Between the battery cells (10), there extends a duct system (30, 62, 66, 68) through which the temperature control fluid (70) flows. The duct system (30, 62, 66, 68) is separated completely from a degassing system (16, 54) of the battery cells (10).