Abstract:
Disclosed is a bioimpedance measurement system: A stabilized high frequency current generator is connected to PadSet electrodes via a Patient Cable. Electrodes are connected to an adaptive circuit that conditions the resulting voltage signal and converts it to digital form. Firmware performs signal acquisition and relays data to the device.
Abstract:
Disclosed is a system that includes a sensor for acquiring a physiological bioelectrical impedance signal from a patient functionally connected to the computing device. The computing device preferably analyzes the physiological bioelectrical impedance signal and provides outputs an assessment of minute ventilation of the patient based on the analyzed bioelectrical impedance signal. Preferably, the system monitors the signal over time, provides a control signal to an IV pump that instructs the IV Pump to automatically adjust medication levels by automatically lowering medication levels when respiration levels fall or completely stopping flow of the medication.
Abstract:
An electrode padset and a method of using the electrode padset are disclosed herein. The electrode padset is a single unit, consisting of multiple patient-contacting conductive pads arranged on a single piece of material. The padset is comprised of a plurality of conductive pads, at least one conductive pad adapted to emit an electrical signal and at least one other conductive pad adapted to receive an electrical signal, and an electrically conductive material coupling the conductive pads.
Abstract:
Disclosed is a bioimpedance measurement system: A stabilized high frequency current generator is connected to PadSet electrodes via a Patient Cable. Electrodes are connected to an adaptive circuit that conditions the resulting voltage signal and converts it to digital form. Firmware performs signal acquisition and relays data to the device.
Abstract:
Disclosed is a bioimpedance measurement system: A stabilized high frequency current generator is connected to PadSet electrodes via a Patient Cable. Electrodes are connected to an adaptive circuit that conditions the resulting voltage signal and converts it to digital form. Firmware performs signal acquisition and relays data to the device.
Abstract:
An electrode padset and a method of using the electrode padset are disclosed herein. The electrode padset is a single unit, consisting of multiple patient-contacting conductive pads arranged on a single piece of material. The padset is comprised of a plurality of conductive pads, at least one conductive pad adapted to emit an electrical signal and at least one other conductive pad adapted to receive an electrical signal, and an electrically conductive material coupling the conductive pads.
Abstract:
Disclosed is a system that includes a sensor for acquiring a physiological bioelectrical impedance signal from a patient functionally connected to the computing device. The computing device preferably analyzes the physiological bioelectrical impedance signal and provides outputs an assessment of minute ventilation of the patient based on the analyzed bioelectrical impedance signal. Preferably, the system monitors the signal over time, provides a control signal to an IV pump that instructs the IV Pump to automatically adjust medication levels by automatically lowering medication levels when respiration levels fall or completely stopping flow of the medication.
Abstract:
Disclosed is a bioimpedance measurement system: A stabilized high frequency current generator is connected to PadSet electrodes via a Patient Cable. Electrodes are connected to an adaptive circuit that conditions the resulting voltage signal and converts it to digital form. Firmware performs signal acquisition and relays data to the device.