-
公开(公告)号:US20100147835A1
公开(公告)日:2010-06-17
申请号:US12463952
申请日:2009-05-11
Applicant: Rao V. Mulpuri , Yonglai Tian , Siddarth G. Sundaresan
Inventor: Rao V. Mulpuri , Yonglai Tian , Siddarth G. Sundaresan
CPC classification number: H01L21/02631 , C23C14/025 , C23C14/04 , C23C14/0635 , C23C14/28 , C23C14/541 , C30B11/12 , C30B23/066 , C30B29/36 , C30B29/60 , H01L21/02491 , H01L21/02513 , H01L21/02529 , H01L21/02603 , H01L21/02609 , Y10S438/931
Abstract: The present invention involves annealing methods for doped gallium nitride (GaN). In one embodiment, one method includes placing, within a heating unit, a silicon carbide (SiC) wafer as a susceptor in close proximity with a doped GaN epilayer, wherein the doped GaN epilayer is either a GaN layer grown on a substrate or a GaN layer that is free standing; and heating, at a heating rate of at least about 100° C./s, the wafer and the doped GaN epilayer to at least about 1200° C. In another embodiment, another method includes placing, within a heating unit, a doped GaN epilayer, wherein the doped GaN epilayer is either a GaN layer grown on a conducting substrate or a GaN layer that is free standing; and heating, at a heating rate of at least about 100° C./s, the doped GaN epilayer to at least about 1200° C.
Abstract translation: 本发明涉及用于掺杂氮化镓(GaN)的退火方法。 在一个实施例中,一种方法包括在加热单元内放置碳化硅(SiC)晶片作为紧邻掺杂的GaN外延层的基座,其中所述掺杂的GaN外延层是在衬底或GaN上生长的GaN层 独立的层; 并且以至少约100℃/ s的加热速率将晶片和掺杂的GaN外延层加热至至少约1200℃。在另一个实施例中,另一种方法包括在加热单元内放置掺杂的GaN 外延层,其中所述掺杂GaN外延层是在导电衬底上生长的GaN层或独立存在的GaN层; 并以至少约100℃/ s的加热速率将掺杂的GaN外延层加热至至少约1200℃
-
2.
公开(公告)号:US20100068871A1
公开(公告)日:2010-03-18
申请号:US12463942
申请日:2009-05-11
Applicant: Yonglai Tian , Rao V. Mulpuri , Siddarth G. Sundaresan , Albert V. Davydov
Inventor: Yonglai Tian , Rao V. Mulpuri , Siddarth G. Sundaresan , Albert V. Davydov
IPC: H01L21/20
CPC classification number: H01L21/02631 , C23C14/025 , C23C14/04 , C23C14/0635 , C23C14/28 , C23C14/541 , C30B11/12 , C30B23/066 , C30B29/36 , C30B29/60 , H01L21/02491 , H01L21/02513 , H01L21/02529 , H01L21/02603 , H01L21/02609 , Y10S438/931
Abstract: The present invention grows nanostructures using a microwave heating-based sublimation-sandwich SiC polytype growth method comprising: creating a sandwich cell by placing a source wafer parallel to a substrate wafer, leaving a small gap between the source wafer and the substrate wafer; placing a microwave heating head around the sandwich cell to selectively heat the source wafer to a source wafer temperature and the substrate wafer to a substrate wafer temperature; creating a temperature gradient between the source wafer temperature and the substrate wafer temperature; sublimating Si- and C-containing species from the source wafer, producing Si- and C-containing vapor species; converting the Si- and C-containing vapor species into liquid metallic alloy nanodroplets by allowing the metalized substrate wafer to absorb the Si- and C-containing vapor species; and growing nanostructures on the substrate wafer once the alloy droplets reach a saturation point for SiC. The substrate wafer may be coated with a thin metallic film, metal nanoparticles, and/or a catalyst.
Abstract translation: 本发明使用基于微波加热的升华夹心SiC多型生长方法生长纳米结构,其包括:通过将源晶片平行于衬底晶片制造夹层电池,在源晶片和衬底晶片之间留下小的间隙; 将微波加热头围绕夹层电池放置,以将源晶片选择性地加热到源晶片温度,并将衬底晶片选择性地加热到衬底晶片温度; 在源晶片温度和衬底晶片温度之间产生温度梯度; 从源晶片升华含Si和C的物质,产生含Si和C的蒸气物质; 通过允许金属化的基底晶片吸收含Si和C的蒸气物质,将含Si和C的蒸汽物质转化成液体金属合金纳米质子; 并且一旦合金液滴达到SiC的饱和点,就在衬底晶圆上生长纳米结构。 衬底晶片可以涂覆有薄金属膜,金属纳米颗粒和/或催化剂。
-
3.
公开(公告)号:US07994027B2
公开(公告)日:2011-08-09
申请号:US12463942
申请日:2009-05-11
Applicant: Yonglai Tian , Rao V. Mulpuri , Siddharth G. Sundaresan , Albert V. Davydov
Inventor: Yonglai Tian , Rao V. Mulpuri , Siddharth G. Sundaresan , Albert V. Davydov
CPC classification number: H01L21/02631 , C23C14/025 , C23C14/04 , C23C14/0635 , C23C14/28 , C23C14/541 , C30B11/12 , C30B23/066 , C30B29/36 , C30B29/60 , H01L21/02491 , H01L21/02513 , H01L21/02529 , H01L21/02603 , H01L21/02609 , Y10S438/931
Abstract: The present invention grows nanostructures using a microwave heating-based sublimation-sandwich SiC polytype growth method comprising: creating a sandwich cell by placing a source wafer parallel to a substrate wafer, leaving a small gap between the source wafer and the substrate wafer; placing a microwave heating head around the sandwich cell to selectively heat the source wafer to a source wafer temperature and the substrate wafer to a substrate wafer temperature; creating a temperature gradient between the source wafer temperature and the substrate wafer temperature; sublimating Si- and C-containing species from the source wafer, producing Si- and C-containing vapor species; converting the Si- and C-containing vapor species into liquid metallic alloy nanodroplets by allowing the metalized substrate wafer to absorb the Si- and C-containing vapor species; and growing nanostructures on the substrate wafer once the alloy droplets reach a saturation point for SiC. The substrate wafer may be coated with a thin metallic film, metal nanoparticles, and/or a catalyst.
Abstract translation: 本发明使用基于微波加热的升华夹心SiC多型生长方法生长纳米结构,其包括:通过将源晶片平行于衬底晶片制造夹层电池,在源晶片和衬底晶片之间留下小的间隙; 将微波加热头围绕夹层电池放置,以将源晶片选择性地加热到源晶片温度,并将衬底晶片选择性地加热到衬底晶片温度; 在源晶片温度和衬底晶片温度之间产生温度梯度; 从源晶片升华含Si和C的物质,产生含Si和C的蒸气物质; 通过允许金属化的基底晶片吸收含Si和C的蒸气物质,将含Si和C的蒸汽物质转化成液体金属合金纳米质子; 并且一旦合金液滴达到SiC的饱和点,就在衬底晶圆上生长纳米结构。 衬底晶片可以涂覆有薄金属膜,金属纳米颗粒和/或催化剂。
-
-