Abstract:
Current collectors and methods are provided that relate to electrodes that are useful in lithium polymer electrochemical cells. The provided current collectors include a metallic substrate, a substantially uniform nano-scale carbon coating, and an active electrode material. The coating has a maximum thickness of less than about 200 nanometers.
Abstract:
Current collectors and methods are provided that relate to electrodes that are useful in lithium polymer electrochemical cells. The provided current collectors include a metallic substrate, a substantially uniform nano-scale carbon coating, and an active electrode material. The coating has a maximum thickness of less than about 200 nanometers.
Abstract:
Current collectors and methods are provided that relate to electrodes that are useful in lithium polymer electrochemical cells. The provided current collectors include a metallic substrate, a substantially uniform nano-scale carbon coating, and an active electrode material. The coating has a maximum thickness of less than about 200 nanometers.
Abstract:
An adhesive membrane comprises (a) a conductor; (b) a composite material comprising conductive particles at least partially embedded in an electrically insulating layer disposed on the conductor; and (c) a pressure sensitive adhesive layer disposed on the composite material, the conductive particles being capable of electrically connecting the conductor to a second conductor under application of sufficient pressure therebetween, the conductive particles having no relative orientation and being disposed so that substantially all electrical connections made between the conductor and a second conductor will be in the z direction, and the combined thickness of the electrically insulating layer and the pressure sensitive adhesive layer being greater than the size of the largest conductive particle when the largest conductive particle is measured in the z direction.
Abstract:
A detector plate for use in a radiation imaging system includes a first conductive layer, a dielectric layer, a photoconductive layer and a second conductive layer, arranged as a stack in that order. The first conductive layer and the dielectric layer are substantially transparent to radiation energy so as to allow the energy to pass therethrough to be received by the photoconductive layer. The first conductive layer has a periphery defined by a first edge and the dielectric layer has a periphery defined by a second edge, wherein the first edge is offset inward of the second edge defining a margin between the first and second edges. In use, this margin helps inhibit electrical arcing from the first conductive layer to the second conductive layer when a high voltage is applied between these two layers. A preferred embodiment of the detector plate includes an electrically insulative barrier of silicone based Sylgard in the margin around the periphery of the first conductive layer in the form of a "dam" to further prevent arcing and resulting detector plate failure. It is also preferable to include a linear contact on the first conductive layer adapted to connect a high voltage electrode of a power supply to the first conductive layer. The first conductive layer is more stable with the linear contact, as compared to a conventional circular contact.
Abstract:
Electrically-conductive articles are provided that include a current collector (102) having a conductive coating (104a, 104b). The current collector (102) has nanoporous structure, such as that from etched metal, and a carbon coating (104a, 104b) in contact with the current collector (102). The carbon coating (104a, 104b) is free of binder. In some embodiments, the current collector (102) includes etched aluminum. The provided electrically-conductive articles can be electrochemical capacitors or lithium-ion electrochemical cells.
Abstract:
An interdigital electronic device comprises a conductor, an interdigital electrode, and a composite material disposed between the conductor and the interdigital electrode for electrically connecting the conductor and the interdigital electrode under application of sufficient pressure therebetween. The composite material comprises conductive particles at least partially embedded in an electrically insulating layer. The conductive particles have no relative orientation and are disposed so that substantially all electrical connections made between the conductor and the interdigital electrode are in the z direction. At least one of the conductor and the interdigital electrode is movable toward the other.
Abstract:
A method of coating a polymer substrate with a dry composition comprising particles is provided. The particles have a Mohs hardness between 1 and 2.5 and preferably a largest dimension of less than 100 microns. The particles are buffed on the substrate with an applicator which moves in a manner parallel to the surface of the substrate.
Abstract:
Article having a first single, discrete atomic, dry layer of a first weakly bonded crystalline material on at least a surface of a substrate. Embodiments of the articles are useful, for example, in automotive under-the-hood parts exposed to chemicals and extreme temperatures.
Abstract:
An adhesive membrane comprises (a) a conductor; (b) a composite material comprising conductive particles at least partially embedded in an electrically insulating layer disposed on the conductor; and (c) a pressure sensitive adhesive layer disposed on the composite material, the conductive particles being capable of electrically connecting the conductor to a second conductor under application of sufficient pressure therebetween, the conductive particles having no relative orientation and being disposed so that substantially all electrical connections made between the conductor and a second conductor will be in the z direction, and the combined thickness of the electrically insulating layer and the pressure sensitive adhesive layer being greater than the size of the largest conductive particle when the largest conductive particle is measured in the z direction.