摘要:
A layer of Highly Reflective (HR) material is deposited by jetting microdots of the HR material in liquid form onto a substrate and then allowing the HR material to harden. In one example, the HR layer is the HR layer of a white LED assembly. The HR layer is jetted onto the substrate around LED dice of the assembly after die attach and wire bonding have been completed. The HR material can be made to flow laterally so that areas of the substrate under wire bonds are coated with HR material, so that HR material contacts side edges of the LED dice, and so that HR material contacts the inside side edge of a retaining ring. By jetting the HR material in this way, the amount of substrate that is not covered with HR material is reduced, thereby improving the light efficiency of the resulting LED assembly.
摘要:
A device includes a light emitting semiconductor device bonded to an optical element. In some embodiments, the optical element may be elongated or shaped to direct a portion of light emitted by the active region in a direction substantially perpendicular to a central axis of the semiconductor light emitting device and the optical element. In some embodiments, the semiconductor light emitting device and optical element are positioned in a reflector or adjacent to a light guide. The optical element may be bonded to the first semiconductor light emitting device by a bond at an interface disposed between the optical element and the semiconductor light emitting device. In some embodiments, the bond is substantially free of organic-based adhesives.
摘要:
Standardized photon building blocks are used to make both discrete light emitters as well as array products. Each photon building block has one or more LED chips mounted on a substrate. No electrical conductors pass between the top and bottom surfaces of the substrate. The photon building blocks are supported by an interconnect structure that is attached to a heat sink. Landing pads on the top surface of the substrate of each photon building block are attached to contact pads disposed on the underside of a lip of the interconnect structure. In a solder reflow process, the photon building blocks self-align within the interconnect structure. Conductors on the interconnect structure are electrically coupled to the LED dice in the photon building blocks through the contact pads and landing pads. The bottom surface of the interconnect structure is coplanar with the bottom surfaces of the substrates of the photon building blocks.
摘要:
Standardized photon building blocks are packaged in molded interconnect structures to form a variety of LED array products. No electrical conductors pass between the top and bottom surfaces of the substrate upon which LED dies are mounted. Microdots of highly reflective material are jetted onto the top surface. Landing pads on the top surface of the substrate are attached to contact pads disposed on the underside of a lip of the interconnect structure. In a solder reflow process, the photon building blocks self-align within the interconnect structure. Conductors in the interconnect structure are electrically coupled to the LED dies in the photon building blocks through the contact pads and landing pads. Compression molding is used to form lenses over the LED dies and leaves a flash layer of silicone covering the landing pads. The flash layer laterally above the landing pads is removed by blasting particles at the flash layer.
摘要:
A light source includes LED dies that are flip-chip mounted on a flexible plastic substrate. The LED dies are attached to the substrate using an asymmetric conductor material with deformable conducting particles sandwiched between surface mount contacts on the LED dies and traces on the substrate. A diffusively reflective material containing light scattering particles is used instead of expensive reflective cups to reflect light upwards that is emitted sideways from the LED dies. The diffusively reflective material is dispensed over the top surface of the substrate and contacts the side surfaces of the dies. The light scattering particles are spheres of titanium dioxide suspended in silicone. The light source is manufactured in a reel-to-reel process in which the asymmetric conductor material and the diffusively reflective material are cured simultaneously. A silicone layer of molded lenses including phosphor particles is also added over the mounted LED dies in the reel-to-reel process.
摘要:
Using compression molding to form lenses over LED arrays on a metal core printed circuit board leaves a flash layer of silicone covering the contact pads that are later required to connect the arrays to power. A method for removing the flash layer involves blasting particles of sodium bicarbonate at the flash layer. A nozzle is positioned within thirty millimeters of the top surface of the flash layer. The stream of air that exits from the nozzle is directed towards the top surface at an angle between five and thirty degrees away from normal to the top surface. The particles of sodium bicarbonate are added to the stream of air and then collide into the top surface of the silicone flash layer until the flash layer laterally above the contact pads is removed. The edge of silicone around the cleaned contact pad thereafter contains a trace amount of sodium bicarbonate.
摘要:
Using compression molding to form lenses over LED arrays on a metal core printed circuit board leaves a flash layer of silicone covering the contact pads that are later required to connect the arrays to power. A method for removing the flash layer involves blasting particles of sodium bicarbonate at the flash layer. A nozzle is positioned within thirty millimeters of the top surface of the flash layer. The stream of air that exits from the nozzle is directed towards the top surface at an angle between five and thirty degrees away from normal to the top surface. The particles of sodium bicarbonate are added to the stream of air and then collide into the top surface of the silicone flash layer until the flash layer laterally above the contact pads is removed. The edge of silicone around the cleaned contact pad thereafter contains a trace amount of sodium bicarbonate.
摘要:
A light source includes LED dies that are flip-chip mounted on a flexible plastic substrate. The LED dies are attached to the substrate using an asymmetric conductor material with deformable conducting particles sandwiched between surface mount contacts on the LED dies and traces on the substrate. A diffusively reflective material containing light scattering particles is used instead of expensive reflective cups to reflect light upwards that is emitted sideways from the LED dies. The diffusively reflective material is dispensed over the top surface of the substrate and contacts the side surfaces of the dies. The light scattering particles are spheres of titanium dioxide suspended in silicone. The light source is manufactured in a reel-to-reel process in which the asymmetric conductor material and the diffusively reflective material are cured simultaneously. A silicone layer of molded lenses including phosphor particles is also added over the mounted LED dies in the reel-to-reel process.
摘要:
A layer of Highly Reflective (HR) material is deposited by jetting microdots of the HR material in liquid form onto a substrate and then allowing the HR material to harden. In one example, the HR layer is the HR layer of a white LED assembly. The HR layer is jetted onto the substrate around LED dice of the assembly after die attach and wire bonding have been completed. The HR material can be made to flow laterally so that areas of the substrate under wire bonds are coated with HR material, so that HR material contacts side edges of the LED dice, and so that HR material contacts the inside side edge of a retaining ring. By jetting the HR material in this way, the amount of substrate that is not covered with HR material is reduced, thereby improving the light efficiency of the resulting LED assembly.
摘要:
Standardized photon building blocks are packaged in molded interconnect structures to form a variety of LED array products. No electrical conductors pass between the top and bottom surfaces of the substrate upon which LED dies are mounted. Microdots of highly reflective material are jetted onto the top surface. Landing pads on the top surface of the substrate are attached to contact pads disposed on the underside of a lip of the interconnect structure. In a solder reflow process, the photon building blocks self-align within the interconnect structure. Conductors in the interconnect structure are electrically coupled to the LED dies in the photon building blocks through the contact pads and landing pads. Compression molding is used to form lenses over the LED dies and leaves a flash layer of silicone covering the landing pads. The flash layer laterally above the landing pads is removed by blasting particles at the flash layer.