Abstract:
A touch and hover-sensitive sensor system is provided. The system may include a planar light guide that has a plurality of light sources located along a first edge of the light guide and a plurality of light sensors located along a second edge of the light guide orthogonal to the first edge. The light guide may include light-turning arrangements that are configured to redirect light passing through a first side of the light guide from/along orthogonal directions within the light guide. A controller may illuminate proper subsets of the light sources; light that is emitted from the first side and that encounters an object, e.g., a fingertip, may be reflected back into the first side and then redirected to the light sensors. Depending on the light sensors that detect the highest redirected reflected light intensity and the active light sources, the controller may determine the XY/XYZ location of the object.
Abstract:
An optical stylus may be capable of providing active illumination for a touch/proximity sensing apparatus. The optical stylus also may be capable of determining a tilt angle of the optical stylus and/or an amount of pressure exerted upon the optical stylus. In some examples, an optical stylus may determine a tilt angle and/or pressure according to changes in optical flux distributions inside the optical stylus. In some examples, an optical stylus may include a deformable tip. The deformable tip and/or associated features may be capable of altering optical flux distributions inside the optical stylus in response to applied pressure and/or optical stylus tilt. In some implementations, the optical flux provided to the light guide by the optical stylus may vary according to pressure applied to the optical stylus.
Abstract:
This disclosure provides systems, methods and apparatus related to biometric authentication of a user of an electronic device. An electronic display has a display cover glass with a front surface that includes a viewing area, and a fingerprint reading area within the viewing area. At least one photosensing element is configured to detect received scattered light, the received scattered light resulting from interaction of light with an object in at least partial optical contact with the front surface within the fingerprint reading area and to output, to a processor, fingerprint image data.
Abstract:
A vision sensor includes a sensor assembly and a dedicated microprocessor. The sensor assembly includes a pixel array and a lens assembly that is optically coupled with the pixel array. The lens assembly has an F#
Abstract:
A vision sensor includes a sensor assembly and a dedicated microprocessor. The sensor assembly includes a pixel array and a lens assembly that is optically coupled with the pixel array. The lens assembly has an F#
Abstract:
This disclosure provides systems, methods and apparatus related to biometric authentication of a user of an electronic device. An electronic display has a display cover glass with a front surface that includes a viewing area, and a fingerprint reading area within the viewing area. At least one photosensing element is configured to detect received scattered light, the received scattered light resulting from interaction of light with an object in at least partial optical contact with the front surface within the fingerprint reading area and to output, to a processor, fingerprint image data.
Abstract:
Various examples of diffraction grating layers for touch/proximity sensing apparatus are provided. The touch/proximity sensing apparatus may include a light guide and light sources edge-coupled to first side of the light guide. Light sensors may be edge-coupled to a second side of the light guide. The apparatus may include light sensors edge-coupled to the first side of the light guide and/or light sources edge-coupled to the second side of the light guide. A single diffraction grating layer proximate the light guide may be capable of extracting light from the light guide and of directing incident light into the light guide and towards the light sensors. In some examples, a single area or volume of the diffraction grating layer may include a diffraction grating capable of extracting light from the light guide and a diffraction grating capable of directing incident light into the light guide and towards a light sensor.
Abstract:
An optical stylus may be capable of providing active illumination for a touch/proximity sensing apparatus. The optical stylus also may be capable of determining a tilt angle of the optical stylus and/or an amount of pressure exerted upon the optical stylus. In some examples, an optical stylus may determine a tilt angle and/or pressure according to changes in optical flux distributions inside the optical stylus. In some examples, an optical stylus may include a deformable tip. The deformable tip and/or associated features may be capable of altering optical flux distributions inside the optical stylus in response to applied pressure and/or optical stylus tilt. In some implementations, the optical flux provided to the light guide by the optical stylus may vary according to pressure applied to the optical stylus.
Abstract:
A touch and hover-sensitive sensor system is provided. The system may include a planar light guide that has a plurality of light sources located along a first edge of the light guide and a plurality of light sensors located along a second edge of the light guide orthogonal to the first edge. The light guide may include light-turning arrangements that are configured to redirect light passing through a first side of the light guide from/along orthogonal directions within the light guide. A controller may illuminate proper subsets of the light sources; light that is emitted from the first side and that encounters an object, e.g., a fingertip, may be reflected back into the first side and then redirected to the light sensors. Depending on the light sensors that detect the highest redirected reflected light intensity and the active light sources, the controller may determine the XY/XYZ location of the object.