Abstract:
The disclosure is related to managing power consumption of a user equipment (UE) while providing location services. An aspect determines whether a given sensor configuration of a plurality of sensor configurations minimizes power consumption of the UE, wherein a sensor configuration comprises a set of values for a set of one or more sensor parameters controllable by the UE, and, based upon the determining, sets the set of one or more sensor parameters to the given sensor configuration.
Abstract:
Techniques for compensating for inertial and/or magnetic interference in a mobile device are provided. The mobile device can include a vibration motor to vibrate the device, a processor, and can include an inertial sensor and/or a magnetometer. The processor can be configured to actuate the vibration motor to induce vibration of the mobile device, to measure motion of the mobile device with the inertial sensor of the device to produce sensor output data and/or to measure a magnetic field generated by the vibration motor to produce magnetometer output data, and to compensate for the vibration of the inertial sensor induced by the vibration motor to produce compensated sensor output data and/or to compensate for a magnetic field generated by the vibration motor when the vibration motor is actuated to produce compensated magnetometer output data.
Abstract:
Systems, apparatus and methods to supplement, combine, replace, verify and calibrate in-vehicle and in-device sensors and GNSS systems are presented. A mobile device and a vehicle navigation system share sensor and GNSS information to arrive at an improved navigation solution. For example, a navigation solution computed by a vehicle may rely on a sensor signal from a mobile device. Similarly, a navigation solution computed by a mobile device may use a sensor signal or a GNSS signal from a vehicle.
Abstract:
A method in a mobile device includes: receiving location signals at the mobile device; measuring sensor data at the mobile device; determining an oscillation rate of the mobile device from the sensor data; in response to the oscillation rate of the mobile device being undesirable, at least one of: (1) determining a desired sampling rate based on the oscillation rate, the desired sampling rate being different from the oscillation rate; and sampling the location signals at the mobile device at the desired sampling rate; (2) sampling the location signals at the mobile device at a randomized sampling rate; (3) disabling a power improvement technique; (4) increasing filtering of determined course information; (5) reducing a nominal filter bandwidth; or (6) increasing a present sampling rate of the location signals to satisfy Nyquist criteria for the oscillation rate; and determining the position associated with the mobile device using the location signals.
Abstract:
Navigation solutions for a pedestrian or vehicle user are obtained by determining whether the direction and location of the user obtained from a map at least substantially conform to the direction and location of the user based on one or more measurements obtained from one or more sensors, and if the direction and location of the user obtained from the map at least substantially conform to the direction and location of the user based on one or more measurements obtained from one or more sensors, computing the navigation solutions based, at least in part, on the direction and location of the user.
Abstract:
Methods, apparatuses, and devices for generating one or more harsh or diminished radiofrequency environments relative to a planned route of a mobile device user. In one example, a mobile device user a be routed through a harsh or diminished radiofrequency environment based, at least in part, on a sensor suite of a mobile device and/or based on a user's preferences. Prior to entry into such an environment, various sensors may be activated in a manner that permits position estimation in an absence of SPS based positioning signals and/or TPS based positioning signals.
Abstract:
Systems, apparatus and methods to supplement, combine, replace, verify and calibrate in-vehicle and in-device sensors and GNSS systems are presented. A mobile device and a vehicle navigation system share sensor and GNSS information to arrive at an improved navigation solution. For example, a navigation solution computed by a vehicle may rely on a sensor signal from a mobile device. Similarly, a navigation solution computed by a mobile device may use a sensor signal or a GNSS signal from a vehicle.