Abstract:
Methods and apparatuses for providing closed-loop power control during a short inter-frame space (SIFS) burst are described herein. A method includes receiving feedback associated with transmit power used to transmit a first data packet in a SIFS burst. The method also includes adjusting at least the transmit power, or a modulation and coding scheme (MCS), or a combination thereof, used to transmit a second data packet of the SIFS burst based at least in part on the received feedback.
Abstract:
Apparatuses and methods are disclosed for receiving queued downlink (DL) data. In accordance with example embodiments, a first wireless device may receive, from a second wireless device, a beacon frame indicating a presence of queued DL data for concurrent delivery to a plurality of wireless devices. The first wireless device may receive permission to request delivery of the queued DL data. The first wireless device may transmit, to the second wireless device, a request for delivery of the queued DL data based on the permission. The first wireless device may then receive the queued DL data from the second wireless device.
Abstract:
Methods, devices, and apparatuses are described for wireless communications using a multidimensional algorithm for roaming. In one aspect, an initial set of candidate access points (APs) is produced by a station using a roaming scan. The initial set may be identified based at least in part on an initial metric (e.g., beacon signal strength). A probe signal may be transmitted by the station to at least one of the candidate APs in the initial set and information may be received in response to the probe signals. The station may then identify a reduced set from the initial set based at least in part on the received information, where the reduced set is used to select a target AP. At least one additional metric may be identified and the probe signal may be configured to obtain information corresponding to the additional metrics. This information may be used by the station to select the candidate APs in the reduced set.
Abstract:
Methods, systems, and devices are described for adapting blind reception duration for range and congestion. A wireless station may measure channel conditions (e.g., range to an access point (AP) and channel congestion), and adjust one or more sleep timers based on the conditions. The sleep timers may each be associated with a window for reception of an expected transmission. If the transmission is not received in the window, the station may enter a sleep state to conserve power. In one example, a beacon miss timer is adjusted, and the expected wireless transmission is a delivery traffic indication message (DTIM). In another example, a content after beacon (CAB) timer is adjusted and the expected wireless transmission is the CAB. In some cases, the station may measure a delay for a number of beacons and determine the adjustment based on the delays.
Abstract:
Methods, systems, and devices are described for wireless communication at a wireless communication device. A wireless communication device may receive a data frame and use it to estimate a residual channel length (RCL). The device may then modify a finite impulse response (FIR) filter based on the estimated RCL. For example, the device may add additional taps to the FIR filter. The device may continue to adjust the FIR filter until the RCL is at or near zero. In some cases, the wireless communication device may send an indication to the transmitting device to adjust an FIR filter based on the estimated RCL. In some cases, the length of a guard interval may also be adjusted based on the estimated RCL.
Abstract:
Methods, systems, and devices are described for saving power in wireless communications. One aspect includes providing an indication of a sleep duration for transmission to a wireless node, communicating with the wireless node during a target wakeup time (TWT), wherein the communication comprises at least one of providing data for transmission to the wireless node or obtaining data received from the wireless node, and refraining from providing data for transmission to the wireless node for at least the indicated sleep duration based at least in part on timing of the communication. Another aspect includes receiving an indication of a sleep duration from a wireless node, communicating with the wireless node during a time slot of a TWT, and entering a sleep mode for the indicated sleep duration based at least in part on timing of the communication with the wireless node during the time slot of the TWT.
Abstract:
Methods, systems, and devices are described for wireless communication at a wireless communication device. A wireless communication device may receive a data frame and use it to estimate a residual channel length (RCL). The device may then modify a finite impulse response (FIR) filter based on the estimated RCL. For example, the device may add additional taps to the FIR filter. The device may continue to adjust the FIR filter until the RCL is at or near zero. In some cases, the wireless communication device may send an indication to the transmitting device to adjust an FIR filter based on the estimated RCL. In some cases, the length of a guard interval may also be adjusted based on the estimated RCL.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, an apparatus is configured to receive information indicating a wake time period from a STA and use the received wake time period to schedule communication with the STA. The apparatus may use the received wake time period to determine a target transmission time for transmitting a trigger frame to the STA. The apparatus may transmit a beacon to the STA and then transmit the trigger frame to the STA at the target transmission time following the beacon. The apparatus may also indicate an offset from the beacon that the apparatus will use for communication with the STA based on the wake time period of the STA.
Abstract:
Methods and devices are described for wireless communications associated with a multidimensional algorithm for roaming. In one aspect, an access point (or like device) transmits a beacon signal. The access point receives, from a station in receipt of the beacon signal, a probe signal including at least one metric. The access point transmits a response signal based at least in part on the received probe signal, the response signal including information associated with the at least one metric.
Abstract:
Methods and devices are described for wireless communications associated with a multidimensional algorithm for roaming. In one aspect, an access point (or like device) transmits a beacon signal. The access point receives, from a station in receipt of the beacon signal, a probe signal including at least one metric. The access point transmits a response signal based at least in part on the received probe signal, the response signal including information associated with the at least one metric.