Abstract:
Methods, systems, and devices for wireless communication are described. Some wireless communications network may operate in accordance with an open-RAN (ORAN) network specification which may support functional splitting between the ORAN distributed unit (O-DU) and the ORAN radio unit (RU). The O-DU may communicate with the O-RU using control messaging. The control message may include a resource resource element (RE) mask and a resource symbol mask, the resource RE mask indicating frequency resources to be allocated for a reference signal transmission across a set of antenna ports and the resource symbol mask indicating time resources to be allocated for the reference signal transmission. Additionally or alternatively, the O-DU may transmit a control message including a puncturing resource RE mask indicating frequency resources for applying a puncturing pattern and a symbol mask indicating time resources for applying the puncturing pattern during a transmission.
Abstract:
Backhaul traffic reliability is improved in unlicensed spectrum bands by using cross-protocol channel sensing and reservation. Physical carrier sensing may be employed to scan channel quality of a plurality of carriers of an unlicensed spectrum band and select a carrier for use in a wireless backhaul communications link between a first base station and a second base station based on the scanned channel quality. The described features may further include the first base station transmitting a self-addressed reservation frame on the selected first carrier prior to transmission of backhaul data from the first base station to the second base station over the first carrier.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, within a subframe, a plurality of sidelink control channel signals providing scheduling information for a plurality of sidelink shared channel signals that are also received within the subframe. The UE may determine to use one or more of the plurality of sidelink control channel signals as pilot signals for decoding the plurality of sidelink shared channel signals. The UE may decode the plurality of sidelink shared channel signals based at least in part on the plurality of sidelink control channel signals as pilot signals.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may support layer-to-layer listen-before-talk (LBT) interfacing for logical discontinuous transmission (DTX) events. That is, a layer one entity of the base station may indicate to a higher layer that a channel is unavailable or experiencing high levels of interference. For example, a layer one entity of the base station may perform a failed clear channel assessment (CCA) or LBT procedure on the channel. The layer one entity may then convey an indication that a scheduled message was not successfully transmitted to a higher layer (e.g., a media access control (MAC) layer that performs link adaptation and scheduling). The higher layer may schedule a retransmission of the message based on the indication. In some cases, the same link parameters may be used. In other cases, the link parameters may be updated based on channel conditions.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, within a subframe, a plurality of sidelink control channel signals providing scheduling information for a plurality of sidelink shared channel signals that are also received within the subframe. The UE may determine to use one or more of the plurality of sidelink control channel signals as pilot signals for decoding the plurality of sidelink shared channel signals. The UE may decode the plurality of sidelink shared channel signals based at least in part on the plurality of sidelink control channel signals as pilot signals.
Abstract:
Methods, systems, and devices for wireless communications are described. Some wireless communications systems may support communications. For example, a wireless communications system may support New Radio (NR) cellular-vehicle to everything (C-V2X) communication. In some examples, a user equipment (UE) may receive a sidelink control channel for a sidelink transmission on a first set of symbols of a time slot (e.g., the first two or three symbols of a time slot). The UE may decode the sidelink control channel and disable one or more radio frequency (RF) components associated with processing the sidelink transmission on a second set of symbols of the time slot based on decoding the sidelink control channel. For example, the UE may disable one or more RF components if the UE determines the sidelink control channel is decoded unsuccessfully.
Abstract:
Methods, systems, and devices for wireless communications are described. Some wireless communications systems may support communications. For example, a wireless communications system may support New Radio (NR) cellular-vehicle to everything (C-V2X) communication. In some examples, a user equipment (UE) may receive a sidelink control channel for a sidelink transmission on a first set of symbols of a time slot (e.g., the first two or three symbols of a time slot). The UE may decode the sidelink control channel and disable one or more radio frequency (RF) components associated with processing the sidelink transmission on a second set of symbols of the time slot based on decoding the sidelink control channel. For example, the UE may disable one or more RF components if the UE determines the sidelink control channel is decoded unsuccessfully.
Abstract:
In order to enable asynchronous, autonomous reception beam switching at a UE while minimizing degradation due to a transient in link performance, a method, apparatus, and computer-readable medium for wireless communication are provided. The apparatus receives CSI-RS on different reception beams in different symbols, wherein one reception beam being a current serving reception beam, and determines whether to switch to a different reception beam based on a SPEFF metric for the different reception beam and/or a severity of a potential link transient qualified in terms of the expected CQI/MCS degradation in the channel. The apparatus may switch from a current serving reception beam to a second reception beam when a first channel quality for the current serving reception beam is within a threshold value of a second channel quality for the second reception beam, the second channel quality being measured using a current configuration.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may support layer-to-layer listen-before-talk (LBT) interfacing for logical discontinuous transmission (DTX) events. That is, a layer one entity of the base station may indicate to a higher layer that a channel is unavailable or experiencing high levels of interference. For example, a layer one entity of the base station may perform a failed clear channel assessment (CCA) or LBT procedure on the channel. The layer one entity may then convey an indication that a scheduled message was not successfully transmitted to a higher layer (e.g., a media access control (MAC) layer that performs link adaptation and scheduling). The higher layer may schedule a retransmission of the message based on the indication. In some cases, the same link parameters may be used. In other cases, the link parameters may be updated based on channel conditions.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, within a subframe, a plurality of sidelink control channel signals providing scheduling information for a plurality of sidelink shared channel signals that are also received within the subframe. The UE may determine to use one or more of the plurality of sidelink control channel signals as pilot signals for decoding the plurality of sidelink shared channel signals. The UE may decode the plurality of sidelink shared channel signals based at least in part on the plurality of sidelink control channel signals as pilot signals.