Abstract:
Techniques for providing radio-frequency signals to a region of interest for a living-objection protection (LOP) system are provided. An example base wireless power transfer system includes a power-coupling element and a power transfer circuitry configured to provide energy to the power-coupling element to produce a magnetic field, and a living-object protection subsystem including an antenna configured to transmit a first radio-frequency (RF) signal with a main beam directed away from the power transfer circuitry and to receive a second RF signal, the antenna including a radiating element and a reflector with the reflector being disposed between the radiating element and the power transfer circuitry and comprising a metal sheet disposed over an area, the metal sheet defining at least one opening within the area and between the radiating element and the power transfer circuitry.
Abstract:
Methods and apparatus utilizing time division access of multiple radar transceivers in living object detection for wireless power transfer applications are provided. In one aspect, an apparatus for detecting an object in a detection area of a wireless power transfer system is provided. The apparatus comprises a plurality of radar transceivers. The apparatus comprises a processor configured to group the plurality of radar transceivers into pairs of radar transceivers. The processor is configured to instruct each of the pairs of radar transceivers to transmit radar signals during a corresponding time slot of a plurality of time slots. The processor is configured to instruct each of the pairs of radar transceivers to receive the radar signals during the corresponding time slot of the plurality of time slots. The processor is configured to detect the object in the detection area based on at least some of the radar signals received by each of the pairs of radar transceivers.
Abstract:
An apparatus for detecting an object in a detection area of a wireless power transfer system is provided. The apparatus comprises a receiver configured to receive a plurality of radar signals from a radar transceiver. The apparatus comprises a processor configured to convert the plurality of radar signals to a plurality of digital radar signals. The processor is configured to bandpass filter the plurality of digital radar signals. The processor is configured to remove frequency content below a first threshold frequency common to at least two consecutive digital radar signals of the plurality of digital radar signals. The processor is configured to down-convert the plurality of digital radar signals into a plurality of complex digital baseband signals. The processor is configured to detect a range, a speed, and a direction of the object in the detection area based at least in part on the plurality of complex digital baseband signals.