Abstract:
Disclosed is a mobile device to provide enhanced security based upon contextual sensor inputs. The mobile device may include: a biometric sensor; a contextual sensor; and a processor. The processor may be configured to: determine an authentication score based upon a biometric input received from the biometric sensor; modulate the authentication score based upon a contextual sensor input from the contextual sensor related to an event; and determine if the modulated authentication score falls below a predetermined threshold. If the authentication score falls below the predetermined threshold, the processor may command that a secondary authentication be performed.
Abstract:
Techniques for authenticating a biometric input are disclosed. An example of a biometric authentication system is configured to receive a biometric input, perform a first authentication process on the biometric input with an application processor, such that the first authentication process generates one or more authentication parameters, provide the one or more authentication parameters to a secure processor, perform a second authentication process on the biometric input on the secure processor, such that the second authentication process utilizes the one or more authentication parameters, and output an authentication score based on the second authentication process.
Abstract:
Disclosed is a mobile device to provide enhanced security based upon contextual sensor inputs. The mobile device may include: a biometric sensor; a contextual sensor; and a processor. The processor may be configured to: determine an authentication score based upon a biometric input received from the biometric sensor; modulate the authentication score based upon a contextual sensor input from the contextual sensor related to an event; and determine if the modulated authentication score falls below a predetermined threshold. If the authentication score falls below the predetermined threshold, the processor may command that a secondary authentication be performed or the destruction of a biometric template.
Abstract:
Some disclosed methods involve controlling, via a control system, a light source system to emit a plurality of light pulses into biological tissue, the biological tissue including blood and blood vessels at depths within the biological tissue. Such methods may involve receiving, by the control system, signals from the piezoelectric receiver corresponding to acoustic waves emitted from portions of the biological tissue, the acoustic waves corresponding to photoacoustic emissions from the blood and the blood vessels caused by the plurality of light pulses. Such methods may involve generating, by the control system, a plethysmography image based on heart rate waveforms in the signals, and determining a blood pressure differential by comparing the plethysmography image with a reference plethysmography image.
Abstract:
Some disclosed methods involve controlling, via a control system, a light source system to emit a plurality of light pulses into biological tissue at a pulse repetition frequency, the biological tissue including blood and blood vessels at depths within the biological tissue. Such methods may involve receiving, by the control system, signals from the piezoelectric receiver corresponding to acoustic waves emitted from portions of the biological tissue, the acoustic waves corresponding to photoacoustic emissions from the blood and the blood vessels caused by the plurality of light pulses. Such methods may involve detecting, by the control system, heart rate waveforms in the signals, determining, by the control system, a first subset of detected heart rate waveforms corresponding to vein heart rate waveforms and determining, by the control system, a second subset of detected heart rate waveforms corresponding to artery heart rate waveforms.
Abstract:
A system and method for reducing sensor redundancy in sensor-equipped devices includes identifying, via a master device, at least one device within an area. The at least one device is queried to determine at least one of a device status or application status for the at least one device. A configuration of one or more sensors within the at least one device based at least in part on the querying is determined. The one or more sensors within the at least one device is configured to balance quality of service across the master device and the at least one device, based at least in part on the determining.
Abstract:
Some disclosed methods involve monitoring a heart rate waveform associated with a subject to detect cardiac cycle markers, determining a cardiac phase transition window based on the cardiac cycle markers, and activating a photoacoustic sampling system at a start of the cardiac phase transition window, the photoacoustic sampling system including a piezoelectric receiver and a light source system. Such methods may involve, during the cardiac phase transition window, controlling the light source system to emit a plurality of light pulses into biological tissue of the subject, receiving, from the piezoelectric receiver, signals corresponding to acoustic waves emitted from portions of the biological tissue, and obtaining plethysmography data based on the signals. Such methods may involve deactivating the photoacoustic sampling system by an end of the cardiac phase transition window.
Abstract:
Techniques for improving the integrity and performance of biometric security processes on data processing devices are provided. An example of a method of determining a liveness of a biometric input according to the disclosure includes obtaining inquiry image information, obtaining enrollment image information, determining alignment information based on the inquiry image information and the enrollment image information, determining an overlap area based on the alignment information, determining anti-spoofing features based on the overlap area within the inquiry image information and the enrollment image information, and outputting a liveness score based on the anti-spoofing features.
Abstract:
Embodiments of apparatus, computer program product, and method for verifying fingerprint images are disclosed. In one embodiment, a method of verifying fingerprint images includes receiving an inquiry fingerprint image of a user, identifying pattern characteristics of the inquiry fingerprint image, identifying minutiae characteristics of the inquiry fingerprint image, determining a weighted combination of the pattern characteristics of the inquiry fingerprint image and the minutiae characteristics of the inquiry fingerprint image, where the weighted combination comprises a pattern matching weight and a minutiae matching weight derived in accordance with a separation of a first empirical probability density function of genuine fingerprints from a second empirical probability density function of impostor fingerprints, and verifying the inquiry fingerprint image based on a set of fused scores computed using the weighted combination of the pattern characteristics of the inquiry fingerprint image and the minutiae characteristics of the inquiry fingerprint image.