Abstract:
Video encoding and decoding techniques are described in which a predictive image s formed from texture mapping a composite image to a proxy geometry that provides an approximation of a three-dimensional structure of a current image or a previously encoded or decoded image. A residual between the predictive image and the current image is used to encode or decode the current image.
Abstract:
Disclosed are a system, apparatus, and method for multiple client simultaneous localization and mapping. Tracking and mapping may be performed locally and independently by each of a plurality of clients. At configurable points in time map data may be sent to a server for stitching and fusion. In response to successful stitching and fusion to one or more maps known to the server, updated position and orientation information relative to the server's maps may be sent back to the clients. Clients may update their local map data with the received server location data. Clients may receive additional map data from the server, which can be used for extending their maps. Clients may send queries to the server for 3D maps, and the queries may include metadata.
Abstract:
Video encoding and decoding techniques are described in which a predictive image s formed from texture mapping a composite image to a proxy geometry that provides an approximation of a three-dimensional structure of a current image or a previously encoded or decoded image. A residual between the predictive image and the current image is used to encode or decode the current image.
Abstract:
A computer-implemented method, apparatus, computer readable medium and mobile device for initializing a 3-Dimensional (3D) map may include obtaining, from a camera, a single image of an urban outdoor scene and estimating an initial pose of the camera. An untextured model of a geographic region may be obtained. Line features from the single image may be extracted and the orientation may be determined with respect to the untextured model and using the extracted line features, the orientation of the camera in 3 Degrees of Freedom (3DOF). In response to determining the orientation of the camera, a translation in 3DOF with respect to the untextured model may be determined using the extracted line features. The 3D map may be initialized based on the determined orientation and translation.
Abstract:
Methods, systems, computer-readable media, and apparatuses for radiance transfer sampling for augmented reality are presented. In some embodiments, a method includes receiving at least one video frame of an environment. The method further includes generating a surface reconstruction of the environment. The method additionally includes projecting a plurality of rays within the surface reconstruction of the environment. Upon projecting a plurality of rays within the surface reconstruction of the environment, the method includes generating illumination data of the environment from the at least one video frame. The method also includes determining a subset of rays from the plurality of rays in the environment based on areas within the environment needing refinement. The method further includes rendering the virtual object over the video frames based on the plurality of rays excluding the subset of rays.
Abstract:
The present disclosure relates to methods and apparatus for graphics processing. Aspects of the present disclosure can determine at least one scene including one or more viewpoints. Also, aspects of the present disclosure can divide the at least one scene into a plurality of zones based on each of the one or more viewpoints. Further, aspects of the present disclosure can determine whether a zone based on one viewpoint of the one or more viewpoints is substantially similar to a zone based on another viewpoint of the one or more viewpoints. Aspects of the present disclosure can also generate a geometry buffer for each of the plurality of zones based on the one or more viewpoints. Moreover, aspects of the present disclosure can combine the geometry buffers for each of the plurality of zones based on the one or more viewpoints.
Abstract:
An example system includes a first computing device comprising a first graphics processing unit (GPU) implemented in circuitry, and a second computing device comprising a second GPU implemented in circuitry. The first GPU is configured to perform a first portion of an image rendering process to generate intermediate graphics data and send the intermediate graphics data to the second computing device. The second GPU is configured to perform a second portion of the image rendering process to render an image from the intermediate graphics data. The first computing device may be a video game console, and the second computing device may be a virtual reality (VR) headset that warps the rendered image to produce a stereoscopic image pair.
Abstract:
An example system includes a first computing device comprising a first graphics processing unit (GPU) implemented in circuitry, and a second computing device comprising a second GPU implemented in circuitry. The first GPU is configured to perform a first portion of an image rendering process to generate intermediate graphics data and send the intermediate graphics data to the second computing device. The second GPU is configured to perform a second portion of the image rendering process to render an image from the intermediate graphics data. The first computing device may be a video game console, and the second computing device may be a virtual reality (VR) headset that warps the rendered image to produce a stereoscopic image pair.
Abstract:
Disclosed are a system, apparatus, and method for monocular visual simultaneous localization and mapping that handles general 6DOF and panorama camera movements. A 3D map of an environment containing features with finite or infinite depth observed in regular or panorama keyframes is received. The camera is tracked in 6DOF from finite, infinite, or mixed feature sets. Upon detection of a panorama camera movement towards unmapped scene regions, a reference panorama keyframe with infinite features is created and inserted into the 3D map. When panoramic camera movement extends toward unmapped scene regions, the reference keyframe is extended with further dependent panorama keyframes. Panorama keyframes are robustly localized in 6DOF with respect to finite 3D map features. Localized panorama keyframes contain 2D observations of infinite map features that are matched with 2D observations in other localized keyframes. 2D-2D correspondences are triangulated, resulting in new finite 3D map features.
Abstract:
Techniques are presented for monocular visual simultaneous localization and mapping (SLAM) based on detecting a translational motion in the movement of the camera using at least one motion sensor, while the camera is performing panoramic SLAM, and initializing a three dimensional map for tracking of finite features. Motion sensors may include one or more sensors, including inertial (gyroscope, accelerometer), magnetic (compass), vision (camera) or any other sensors built into mobile devices.