摘要:
A bandwidth allocation and management system for cellular communication networks. The system includes at least one master optical switch and processing station, a number of aggregation base stations that are in optical fiber communication with a master optical switching and processing station and a number of auxiliary cellular base stations surrounded by and supported by each aggregation base station. In preferred embodiments a plurality of sets of three neighboring base stations are each adapted to receive and process RF signals transmitted by cellular users within a broadcast and receive range and transmit the RF signals received, by each of the three neighborhood base stations, from each of the cellular users in analog form to the master optical switching and processing station. The master optical switching and processing station processes the three RF signals and combine, for each user within the broadcast and receive range, the three RF signals and to convert the combined RF signals to digital form for transmission to other users in the communication network.
摘要:
A bandwidth allocation and management system for cellular communication networks. The system includes at least one master optical switch and processing station, a number of aggregation base stations that are in optical fiber, communication with a master optical switching and processing station and a number (for example about 18) of auxiliary cellular base stations surrounded by and supported by each aggregation base station. In preferred embodiments each of a plurality of the aggregation base stations is in communication with one or more auxiliary base stations via a wireless millimeter wave link.
摘要:
A bandwidth allocation and management system for cellular communication networks. The system includes at least one master optical switch and processing station, a number of aggregation base stations that are in optical fiber communication with a master optical switching and processing station and a number of auxiliary cellular base stations surrounded by and supported by each aggregation base station. In preferred embodiments a plurality of sets of three neighboring base stations are each adapted to receive and process RF signals transmitted by cellular users within a broadcast and receive range and transmit the RF signals received, by each of the three neighborhood base stations, from each of the cellular users in analog form to the master optical switching and processing station. The master optical switching and processing station processes the three RF signals and combine, for each user within the broadcast and receive range, the three RF signals and to convert the combined RF signals to digital form for transmission to other users in the communication network.
摘要:
The present invention provides an all optical cross connect switch utilizing two-axis MEMS mirrors for cross connecting optical fibers in a first set of optical fibers to optical fibers in a second set of optical fibers. The optical fibers in the first and second sets of optical fibers are precisely positioned in a first fiber-microlens positioning array to define a first set of parallel collimated cross-connect communication beam paths, with each collimated cross-connect communication beam path connecting an optical fiber in the first set of optical fibers with a MEMS mirror in a first MEMS mirror array. Alignment beams are added to and aligned co-axially with each of the first and second sets of parallel collimated cross-connect communication beams. Two beam direction sensor units are positioned to detect each alignment beam in the first and second sets of alignment beams transmitted through the dichroic mirror and a MEMS control system controls the positions of the MEMS mirrors to connect optical fibers in the first set of optical fibers to any of the optical fibers in the second set of optical fibers.
摘要:
The present invention provides an all optical cross connect switch utilizing two-axis MEMS mirrors for cross connecting optical fibers in a first set of optical fibers to optical fibers in a second set of optical fibers. The optical fibers in the first and second sets of optical fibers are precisely positioned in a first fiber-microlens positioning array to define a first set of parallel collimated cross-connect communication beam paths, with each collimated cross-connect communication beam path connecting an optical fiber in the first set of optical fibers with a MEMS mirror in a first MEMS mirror array. Alignment beams are added to and aligned co-axially with each of the first and second sets of parallel collimated cross-connect communication beams. Two beam direction sensor units are positioned to detect each alignment beam in the first and second sets of alignment beams transmitted through the dichroic mirror and a MEMS control system controls the positions of the MEMS mirrors to connect optical fibers in the first set of optical fibers to any of the optical fibers in the second set of optical fibers.
摘要:
An optical cross connect switch. In this switch any optical fiber in an input set of optical fibers, each carrying a communication beam, can be cross connected to any optical fiber in an output set of optical fibers. An alignment beam is added to and aligned co-axially with the communication beam carried by each fiber in the input set of optical fibers to define a communication-alignment beam for each fiber. Each communication-alignment beam is directed within a confined optical pathway to a specific exit aperture in an input array structure. The exit apertures for all of the communication-alignment beams are arranged in a pattern defining an input array so that each communication-alignment beam can be identified by the location of its exit aperture in the input array structure. Each communication-alignment beam is formed into a cross-connection beam by a micro-lens in a first lens micro-lens array. Each cross-connection beam is directed to a lens in a second lens array by two mirrors, a first mirror in a first mirror array and a second mirror in a second mirror array. The lens in the second micro-lens array focuses the communication beams into a specific input aperture of a confined optical pathway, preferably an optical fiber, in an output array structure. Each of the confined optical pathways in the output array structure is optically connected to an optical fiber of an output set of optical fibers. A first detector array located near the second lens array monitors the position of each alignment beam and provides position information to a processor for control of the mirrors in at least one of the mirror arrays.
摘要:
A scalable optical switch especially useful for switching multimode beams carried by optical fibers. Light from an input fiber is focused by a lens which is moved in an x-y direction perpendicular to the beam direction in order to switch the beam from one output fiber to a different fiber. In preferred embodiments the beam can be directed to any one of as many as 90 output fibers. Techniques for scaling the switch to produce N×N switches with N being large are described. Embodiments of the present invention can also be utilized to create more elaborate fiber optical switches such as an N×N switch and a N2×N switch.
摘要:
Methods and devices for the measurement of molecular binding interactions. Preferred embodiments provide real-time measurements of kinetic binding and disassociation of molecules including binding and disassociation of protein molecules with other protein molecules and with other molecules. In preferred embodiments ligands are immobilized within pores of a porous silicon interaction region produced in a silicon substrate, after which analytes suspended in a fluid are flowed over the porous silicon region. Binding reactions occur when analyte molecules diffuse closely enough to the ligands to become bound. Preferably the binding and subsequent disassociation reactions are observed utilizing a white light source and thin film interference techniques with spectrometers arranged to detect changes in indices of refraction in the region where the binding and disassociation reactions occur. In preferred embodiments both ligands and analytes are delivered by computer controlled robotic fluid flow control techniques to the porous silicon interaction regions through microfluidic flow channels.
摘要:
Optical sensor for the measurement of molecular binding interactions. Preferred embodiments provide real-time measurements of kinetic binding and disassociation of molecules including binding and disassociation of protein molecules with other protein molecules and with other molecules. In preferred embodiments ligands are immobilized within pores of a porous silicon interaction region produced in a silicon substrate, after which analytes suspended in a fluid are flowed over the porous silicon region. Binding reactions occur when analyte molecules diffuse closely enough to the ligands to become bound. In preferred embodiments both ligands and analytes are delivered by computer controlled robotic fluid flow control techniques to the porous silicon interaction regions through microfluidic flow channels.