Abstract:
A videoconference apparatus and method coordinates a stationary view obtained with a stationary camera to an adjustable view obtained with an adjustable camera. The stationary camera can be a web camera, while the adjustable camera can be a pan-tilt-zoom camera. As the stationary camera obtains video, participants are detected and localized by establishing a static perimeter around a participant in which no motion is detected. Thereafter, if no motion is detected in the perimeter, any personage objects such as head, face, or shoulders which are detected in the region bounded by the perimeter are determined to correspond to the participant.
Abstract:
A videoconferencing system has a videoconferencing unit that use portable devices as peripherals for the system. The portable devices obtain near-end audio and send the audio to the videoconferencing unit via a wireless connection. In turn, the videoconferencing unit sends the near-end audio from the loudest portable device along with near-end video to the far-end. The portable devices can control the videoconferencing unit and can initially establish the videoconference by connecting with the far-end and then transferring operations to the videoconferencing unit. To deal with acoustic coupling between the unit's loudspeaker and the portable device's microphone, the unit uses an echo canceller that is compensated for differences in the clocks used in the A/D and D/A converters of the loudspeaker and microphone.
Abstract:
A videoconference apparatus and method coordinates a stationary view obtained with a stationary camera to an adjustable view obtained with an adjustable camera. The stationary camera can be a web camera, while the adjustable camera can be a pan-tilt-zoom camera. As the stationary camera obtains video, participants are detected and localized by establishing a static perimeter around a participant in which no motion is detected. Thereafter, if no motion is detected in the perimeter, any personage objects such as head, face, or shoulders which are detected in the region bounded by the perimeter are determined to correspond to the participant.
Abstract:
A videoconferencing system has a videoconferencing unit that use portable devices as peripherals for the system. The portable devices obtain near-end audio and send the audio to the videoconferencing unit via a wireless connection. In turn, the videoconferencing unit sends the near-end audio from the loudest portable device along with near-end video to the far-end. The portable devices can control the videoconferencing unit and can initially establish the videoconference by connecting with the far-end and then transferring operations to the videoconferencing unit. To deal with acoustic coupling between the unit's loudspeaker and the portable device's microphone, the unit uses an echo canceller that is compensated for differences in the clocks used in the A/D and D/A converters of the loudspeaker and microphone.
Abstract:
A videoconferencing system includes at least one processor and at least one camera. The endpoint can capture one or more images with the camera. The system can locate a region of interest within an image, such as the area surrounding the face of a person participating in a videoconference. If the face area or other region of interest is too dark, the system can brighten the region to make it more visible. The system can determine whether the face is too dark by comparing the captured image to previously captured images, or comparing the luma values and other data making up the face to predetermined values, or both. The system can check the modified image for over-brightening or saturation, and further adjust the image as needed. The brightening of the face area is done in such a way that the brightened region is unobtrusive to the viewer.
Abstract:
A videoconferencing system has a videoconferencing unit that use portable devices as peripherals for the system. The portable devices obtain near-end audio and send the audio to the videoconferencing unit via a wireless connection. In turn, the videoconferencing unit sends the near-end audio from the loudest portable device along with near-end video to the far-end. The portable devices can control the videoconferencing unit and can initially establish the videoconference by connecting with the far-end and then transferring operations to the videoconferencing unit. To deal with acoustic coupling between the unit's loudspeaker and the portable device's microphone, the unit uses an echo canceller that is compensated for differences in the clocks used in the A/D and D/A converters of the loudspeaker and microphone.
Abstract:
A videoconference apparatus and method coordinates a stationary view obtained with a stationary camera to an adjustable view obtained with an adjustable camera. The stationary camera can be a web camera, while the adjustable camera can be a pan-tilt-zoom camera. As the stationary camera obtains video, participants are detected and localized by establishing a static perimeter around a participant in which no motion is detected. Thereafter, if no motion is detected in the perimeter, any personage objects such as head, face, or shoulders which are detected in the region bounded by the perimeter are determined to correspond to the participant.
Abstract:
A videoconferencing system has a videoconferencing unit that use portable devices as peripherals for the system. The portable devices obtain near-end audio and send the audio to the videoconferencing unit via a wireless connection. In turn, the videoconferencing unit sends the near-end audio from the loudest portable device along with near-end video to the far-end. The portable devices can control the videoconferencing unit and can initially establish the videoconference by connecting with the far-end and then transferring operations to the videoconferencing unit. To deal with acoustic coupling between the unit's loudspeaker and the portable device's microphone, the unit uses an echo canceller that is compensated for differences in the clocks used in the A/D and D/A converters of the loudspeaker and microphone.
Abstract:
A method includes, during a teleconference between a first audio input/output device and a second audio input/output device, receiving, at an analysis and response device, a signal indicating a spoken command, the spoken command associated with a command mode. The method further includes, in response to receiving the signal, generating, at the device, a reply message based on the spoken command, the reply message to be output to one or more devices selected based on the command mode. The one or more devices includes the first audio input/output device, the second audio input/output device, or a combination thereof.
Abstract:
A videoconferencing system has a videoconferencing unit that use portable devices as peripherals for the system. The portable devices obtain near-end audio and send the audio to the videoconferencing unit via a wireless connection. In turn, the videoconferencing unit sends the near-end audio from the loudest portable device along with near-end video to the far-end. The portable devices can control the videoconferencing unit and can initially establish the videoconference by connecting with the far-end and then transferring operations to the videoconferencing unit. To deal with acoustic coupling between the unit's loudspeaker and the portable device's microphone, the unit uses an echo canceller that is compensated for differences in the clocks used in the A/D and D/A converters of the loudspeaker and microphone.