Abstract:
Traditional audio feedback elimination systems may attempt to reduce the effect of the audio feedback by simply scaling down the audio volume of the signal frequencies that are prone to howling. Other traditional feedback elimination systems may also employ adaptive notch filtering to detect and “notch” the so-called “singing” or “howling” frequencies as they occur in real-time. Such devices may typically have several knobs and buttons needing tuning, for example: the number of adaptive parametric equalizers (PEQs) versus fixed PEQs; attack and decay timers; and/or PEQ bandwidth. Rather than removing the singing frequencies with PEQs, the devices described herein attempt to holistically model the feedback audio and then remove the entire feedback signal. Two advantages of the devices described herein are: 1.) the system can operate at a much larger loop-gain (and hence with a much higher loudspeaker volume); and 2) setup is greatly simplified (i.e., no tuning knobs or buttons).
Abstract:
A videoconferencing system has a videoconferencing unit that use portable devices as peripherals for the system. The portable devices obtain near-end audio and send the audio to the videoconferencing unit via a wireless connection. In turn, the videoconferencing unit sends the near-end audio from the loudest portable device along with near-end video to the far-end. The portable devices can control the videoconferencing unit and can initially establish the videoconference by connecting with the far-end and then transferring operations to the videoconferencing unit. To deal with acoustic coupling between the unit's loudspeaker and the portable device's microphone, the unit uses an echo canceller that is compensated for differences in the clocks used in the A/D and D/A converters of the loudspeaker and microphone.
Abstract:
A videoconferencing system has a videoconferencing unit that use portable devices as peripherals for the system. The portable devices obtain near-end audio and send the audio to the videoconferencing unit via a wireless connection. In turn, the videoconferencing unit sends the near-end audio from the loudest portable device along with near-end video to the far-end. The portable devices can control the videoconferencing unit and can initially establish the videoconference by connecting with the far-end and then transferring operations to the videoconferencing unit. To deal with acoustic coupling between the unit's loudspeaker and the portable device's microphone, the unit uses an echo canceller that is compensated for differences in the clocks used in the A/D and D/A converters of the loudspeaker and microphone.
Abstract:
Methods and systems for cancelation of table noise in a speaker system used for video or audio conferencing are disclosed. Table noise is cancelled by using a vertical microphone array to distinguish the tilt angle of sound received by a microphone. If the sound is close to horizontal, the audio is muted. If the sound is above a given angle from horizontal, it is not muted, as this indicates a person speaking. This eliminates paper rustling, keyboard clicks and the like.
Abstract:
The amount of far-field noise transmitted by a primary communication device in an open-plan office environment is reduced by defining an acoustic perimeter of reference microphones around the primary device. Reference microphones generate a reference audio input including far-field noise in the proximity of the primary device. The primary device generates a main audio input including the voice of the primary speaker as well as background noise. Reference audio input is compared to main audio input to identify the background noise portion of the main audio signal. A noise reduction algorithm suppresses the identified background noise in the main audio signal. The one or more reference microphones defining the acoustic perimeter may be included in separate microphone devices placed in proximity to the main desktop phone, microphones within other nearby desktop telephone devices, or a combination of both types of devices.
Abstract:
An endpoint receives audio from a remote endpoint. A first signal corresponding to the audio is received at an adaptive filter, and a filtered signal is generated. First audio is emitted at a loudspeaker based on the first signal. A microphone collects second audio which is based on the first audio. The microphone signal emits a signal based on the second audio. The filtered signal is subtracted from microphone signal to generate an adapted signal, the adapted signal having an energy level. The adapted signal is then transmitted to a double-talk detector, the double-talk detector configured to allow transmission of the adapted signal to the remote endpoint when the energy level of the adapted signal exceeds an energy threshold. The degree of cross-correlation between the first signal and the adapted signal is determined (iteratively). If the cross-correlation exceeds a cross-correlation threshold, the energy threshold of the double-talk detector is raised.
Abstract:
Traditional audio feedback elimination systems may attempt to reduce the effect of the audio feedback by simply scaling down the audio volume of the signal frequencies that are prone to howling. Other traditional feedback elimination systems may also employ adaptive notch filtering to detect and “notch” the so-called “singing” or “howling” frequencies as they occur in real-time. Such devices may typically have several knobs and buttons needing tuning, for example: the number of adaptive parametric equalizers (PEQs) versus fixed PEQs; attack and decay timers; and/or PEQ bandwidth. Rather than removing the singing frequencies with PEQs, the devices described herein attempt to holistically model the feedback audio and then remove the entire feedback signal. Two advantages of the devices described herein are: 1.) the system can operate at a much larger loop-gain (and hence with a much higher loudspeaker volume); and 2) setup is greatly simplified (i.e., no tuning knobs or buttons).
Abstract:
A method includes, during a teleconference between a first audio input/output device and a second audio input/output device, receiving, at an analysis and response device, a signal indicating a spoken command, the spoken command associated with a command mode. The method further includes, in response to receiving the signal, generating, at the device, a reply message based on the spoken command, the reply message to be output to one or more devices selected based on the command mode. The one or more devices includes the first audio input/output device, the second audio input/output device, or a combination thereof.
Abstract:
A videoconferencing system has a videoconferencing unit that use portable devices as peripherals for the system. The portable devices obtain near-end audio and send the audio to the videoconferencing unit via a wireless connection. In turn, the videoconferencing unit sends the near-end audio from the loudest portable device along with near-end video to the far-end. The portable devices can control the videoconferencing unit and can initially establish the videoconference by connecting with the far-end and then transferring operations to the videoconferencing unit. To deal with acoustic coupling between the unit's loudspeaker and the portable device's microphone, the unit uses an echo canceller that is compensated for differences in the clocks used in the A/D and D/A converters of the loudspeaker and microphone.
Abstract:
A videoconferencing system has a videoconferencing unit that use portable devices as peripherals for the system. The portable devices obtain near-end audio and send the audio to the videoconferencing unit via a wireless connection. In turn, the videoconferencing unit sends the near-end audio from the loudest portable device along with near-end video to the far-end. The portable devices can control the videoconferencing unit and can initially establish the videoconference by connecting with the far-end and then transferring operations to the videoconferencing unit. To deal with acoustic coupling between the unit's loudspeaker and the portable device's microphone, the unit uses an echo canceller that is compensated for differences in the clocks used in the A/D and D/A converters of the loudspeaker and microphone.