Abstract:
A system for ensuring that the best available view of a person's face is included in a video stream when the person's face is being captured by multiple cameras at multiple angles at a first endpoint. The system uses one or more microphone arrays to capture direct-reverberant ratio information corresponding to the views, and determines which view most closely matches a view of the person looking directly at the camera, thereby improving the experience for viewers at a second endpoint.
Abstract:
A videoconference apparatus and method coordinates a stationary view obtained with a stationary camera to an adjustable view obtained with an adjustable camera. The stationary camera can be a web camera, while the adjustable camera can be a pan-tilt-zoom camera. As the stationary camera obtains video, participants are detected and localized by establishing a static perimeter around a participant in which no motion is detected. Thereafter, if no motion is detected in the perimeter, any personage objects such as head, face, or shoulders which are detected in the region bounded by the perimeter are determined to correspond to the participant.
Abstract:
A videoconference apparatus and method coordinates a stationary view obtained with a stationary camera to an adjustable view obtained with an adjustable camera. The stationary camera can be a web camera, while the adjustable camera can be a pan-tilt-zoom camera. As the stationary camera obtains video, participants are detected and localized by establishing a static perimeter around a participant in which no motion is detected. Thereafter, if no motion is detected in the perimeter, any personage objects such as head, face, or shoulders which are detected in the region bounded by the perimeter are determined to correspond to the participant.
Abstract:
Noise suppression systems and methods suppress far field noise in a microphone signal. A telephony system includes a main microphone and a reference microphone. In one example, the main microphone and the reference microphone can be located in the same device. In another example, the main microphone and the reference microphone can be located in two separate devices. A DSP can use the reference microphone signal to carry out suppression of far field noise in the main microphone signal. In one approach the DSP can determine an estimate of far field noise in the main microphone signal based on a noise estimate of the reference microphone signal and a reference and main microphone coupling estimate, and then subtract the far field noise estimate from the main microphone signal. Alternatively, the DSP can suppress the main microphone signal if it determines that a local talker is inactive.
Abstract:
A videoconference apparatus and method coordinates a stationary view obtained with a stationary camera to an adjustable view obtained with an adjustable camera. The stationary camera can be a web camera, while the adjustable camera can be a pan-tilt-zoom camera. As the stationary camera obtains video, participants are detected and localized by establishing a static perimeter around a participant in which no motion is detected. Thereafter, if no motion is detected in the perimeter, any personage objects such as head, face, or shoulders which are detected in the region bounded by the perimeter are determined to correspond to the participant.
Abstract:
A videoconference apparatus and method coordinates a stationary view obtained with a stationary camera to an adjustable view obtained with an adjustable camera. The stationary camera can be a web camera, while the adjustable camera can be a pan-tilt-zoom camera. As the stationary camera obtains video, participants are detected and localized by establishing a static perimeter around a participant in which no motion is detected. Thereafter, if no motion is detected in the perimeter, any personage objects such as head, face, or shoulders which are detected in the region bounded by the perimeter are determined to correspond to the participant.
Abstract:
A videoconferencing apparatus automatically tracks speakers in a room and dynamically switches between a controlled, people-view camera and a fixed, room-view camera. When no one is speaking, the apparatus shows the room view to the far-end. When there is a dominant speaker in the room, the apparatus directs the people-view camera at the dominant speaker and switches from the room-view camera to the people-view camera. When there is a new speaker in the room, the apparatus switches to the room-view camera first, directs the people-view camera at the new speaker, and then switches to the people-view camera directed at the new speaker. When there are two near-end speakers engaged in a conversation, the apparatus tracks and zooms-in the people-view camera so that both speakers are in view.
Abstract:
Noise suppression systems and methods suppress far field noise in a microphone signal. A telephony system includes a main microphone and a reference microphone. In one example, the main microphone and the reference microphone can be located in the same device. In another example, the main microphone and the reference microphone can be located in two separate devices. A DSP can use the reference microphone signal to carry out suppression of far field noise in the main microphone signal. In one approach the DSP can determine an estimate of far field noise in the main microphone signal based on a noise estimate of the reference microphone signal and a reference and main microphone coupling estimate, and then subtract the far field noise estimate from the main microphone signal. Alternatively, the DSP can suppress the main microphone signal if it determines that a local talker is inactive.
Abstract:
A videoconference apparatus and method coordinates a stationary view obtained with a stationary camera to an adjustable view obtained with an adjustable camera. The stationary camera can be a web camera, while the adjustable camera can be a pan-tilt-zoom camera. As the stationary camera obtains video, participants are detected and localized by establishing a static perimeter around a participant in which no motion is detected. Thereafter, if no motion is detected in the perimeter, any personage objects such as head, face, or shoulders which are detected in the region bounded by the perimeter are determined to correspond to the participant.
Abstract:
A videoconferencing apparatus automatically tracks speakers in a room and dynamically switches between a controlled, people-view camera and a fixed, room-view camera. When no one is speaking, the apparatus shows the room view to the far-end. When there is a dominant speaker in the room, the apparatus directs the people-view camera at the dominant speaker and switches from the room-view camera to the people-view camera. When there is a new speaker in the room, the apparatus switches to the room-view camera first, directs the people-view camera at the new speaker, and then switches to the people-view camera directed at the new speaker. When there are two near-end speakers engaged in a conversation, the apparatus tracks and zooms-in the people-view camera so that both speakers are in view.