Abstract:
A method for fabricating a metal-insulator-metal capacitor is described. A first metal layer is formed on a substrate. A plasma treatment is performed on the surface of the first metal layer. Then, a first oxide layer, a nitride layer and a second oxide layer are formed in sequence over the first metal layer. Thereafter, a second metal layer is formed on the second oxide layer. The second metal layer, the second oxide layer, the nitride layer, the first oxide layer and the first metal layer are defined to form the metal-insulator-metal capacitor.
Abstract:
A method for fabricating a metal-insulator-metal capacitor is described. A first metal layer is formed on a substrate. A plasma treatment is performed on the surface of the first metal layer. Then, a first oxide layer, a nitride layer and a second oxide layer are formed in sequence over the first metal layer. Thereafter, a second metal layer is formed on the second oxide layer. The second metal layer, the second oxide layer, the nitride layer, the first oxide layer and the first metal layer are defined to form the metal-insulator-metal capacitor.
Abstract:
A method for fabricating a metal-insulator-metal capacitor is described. A first metal layer is formed on a substrate. A plasma treatment is performed on the surface of the first metal layer. Then, a first oxide layer, a nitride layer and a second oxide layer are formed in sequence over the first metal layer. Thereafter, a second metal layer is formed on the second oxide layer. The second metal layer, the second oxide layer, the nitride layer, the first oxide layer and the first metal layer are defined to form the metal-insulator-metal capacitor.
Abstract:
The present invention disclosed a manufacturing method of shallow trench isolation (STI). By making use of depositing two layer of SiON with specific thickness and different extinction coefficient (k) as the ARC, comprising: (a) Depositing pad oxide/silicon nitride on a substrate as a hard mask for etching; (b) Depositing a layer of high extinction coefficient SiON on said silicon nitride, then depositing a layer of low extinction coefficient SiON as the ARC; (c) Exposing by using a STI mask and developing to form an etching mask of said STI; (d) Etching said SiON, silicon nitride, pad oxide and said substrate to form a shallow trench; (e) Growing an oxide layer on the side-wall and the bottom of said shallow trench to remove damage and decrease leakage; (f) Depositing an oxide layer on said shallow trench and said silicon nitride to fill said shallow trench; (g) planarizing by CMP.
Abstract:
A method for gap filling between metal-metal lines is provided so that a first dielectric layer forms on a surface and side wall of a plurality of metal lines thereon which is called partially HDP deposition. Then, a portion of the first dielectric layer is removed by a high-density plasma with Ar/O2 to sputter so that a portion of side wall of metal lines is exposed. Afterwards, a second dielectric layer is formed on the first dielectric layer by a method of high density plasma oxide deposition so that the metal lines are completely covered.
Abstract translation:提供金属 - 金属线之间的间隙填充的方法,使得第一介电层在其上的多个金属线的表面和侧壁上形成,称为部分HDP沉积。 然后,通过具有Ar / O 2 N的高密度等离子体去除第一介电层的一部分,以溅射金属线的侧壁的一部分。 之后,通过高密度等离子体氧化物沉积的方法在第一介电层上形成第二电介质层,使得金属线被完全覆盖。
Abstract:
A method to prevent the formation of a thinner portion of insulating layer, especially a gate oxide layer, at the junction between the side walls and the bottom insulator is disclosed. First, a pad oxide layer is formed on the side walls and the bottom of the trench. Next, a bottom oxide is formed on the lower portion of the trench. Then, the upper portion of the bottom oxide and the exposed pad oxide layer are removed by wet etching to leave a bottom oxide having a concave surface. Next, the conformal gate oxide layer is grown on the exposed side walls of the trench.
Abstract:
An infrared imaging sensor and a vacuum packaging method thereof are described. The infrared imaging sensor includes a ceramic base, a metal cap and an infrared filter. The ceramic base has an infrared imaging chip attached thereon and the metal cap includes a getter deposited on an inner surface of the metal cap. The infrared filter seals an opening of the metal cap. The ceramic base, the metal cap and the infrared filter are heated in a vacuum chamber to activate the getter, and to solder the ceramic base, the metal cap and the infrared filter together thereby vacuum packaging the infrared imaging sensor.
Abstract:
A method for improving gate oxide thinning issue at trench corners is disclosed. The method comprises steps as follows. Firstly, a silicon substrate having a trench therein is provided. HDPCVD technology to form a first oxide layer on the sidewall and the bottom of the trench is carried out. After performing an etchback to leave the first oxide layer on the bottom of the trench, a second oxide layer is formed on the first oxide layer and on sidewalls of the trench by LPCVD technology. Thereafter, an isotropic etching is performed so as to remove a substantially portion of the second oxide layer and leave a remnant portion of second oxide layer on the trench corners. As a consequently, the trench corners are smooth. Finally, a thermal oxidation to form a third oxide layer on the sidewall of the trench is carried achieved to accomplish the gate oxide formation.
Abstract:
A method to prevent the formation of a thinner portion of insulating layer, especially a gate oxide layer, at the junction between the side walls and the bottom insulator is disclosed. First, a pad oxide layer is formed on the side walls and the bottom of the trench. Next, a bottom oxide is formed on the lower portion of the trench. Then, the upper portion of the bottom oxide and the exposed pad oxide layer are removed by wet etching to leave a bottom oxide having a concave surface. Next, the conformal gate oxide layer is grown on the exposed side walls of the trench.
Abstract:
An irradiation process method for forming polysilicon layer is disclosed. The method includes firstly forming an alpha-silicon layer on substrate. Then the temperature of the UHV-CVD chamber is increased and the wafer is sent into the chamber. Gas is then intermittently conducted into the vacuum-chamber apparatus. While increasing the temperature of the vacuum-chamber apparatus, the whole throughput thus increases and the process-time for the polysilicon layer thus decreases. Finally, the electrical capacity thus increases by forming the polysilicon layer.