摘要:
An application controller for an application unit, for marking substances comprises a radiation sensor, by means of which the relative position of the application unit relative to a reference plane may be determined. The relative position of the application unit can be determined by means for recording the orientation of the application unit controller relative to the reference plane from the association of position with orientation information, such that control instructions, in particular for positional correction may be generated by the application unit controller. The position of the application unit can be adjusted by an actuator device according to the control instructions.
摘要:
A reference beam generator (1) for guiding a field marker for ground markings has a support element (11) which can be positioned in a defined manner relative to the Earth's surface, a laser diode and beam guidance means for the emission of the radiation (LS) to at least one reference target (4), the radiation (LS) being emitted with an asymmetrical beam cross-section (5), in particular in the form of a fan, and the beam guidance means being adjustable in a defined manner relative to the support element (11). The radiation (LS) can be aligned with the reference target (4) by an optical detection component for detecting and providing the radiation reflected by the reference target, in particular a telescope (12).
摘要:
An application controller for an application unit, for marking substances comprises a radiation sensor, by means of which the relative position of the application unit relative to a reference plane may be determined. The relative position of the application unit can be determined by means for recording the orientation of the application unit controller relative to the reference plane from the association of position with orientation information, such that control instructions, in particular for positional correction may be generated by the application unit controller. The position of the application unit can be adjusted by an actuator device according to the control instructions.
摘要:
A reference beam generator (1) for guiding a field marker for ground markings has a support element (11) which can be positioned in a defined manner relative to the Earth's surface, a laser diode and beam guidance means for the emission of the radiation (LS) to at least one reference target (4), the radiation (LS) being emitted with an asymmetrical beam cross-section (5), in particular in the form of a fan, and the beam guidance means being adjustable in a defined manner relative to the support element (11). The radiation (LS) can be aligned with the reference target (4) by an optical detection component for detecting and providing the radiation reflected by the reference target, in particular a telescope (12).
摘要:
The invention relates to a method for correcting a distortion in an aerial photograph caused by a flight movement in the forward direction. The aerial photograph is captured by a surface sensor, the sensor lines of which sensor are exposed at different, successive exposure times, so that each individual sensor line senses a strip of terrain of the terrain flow over at the different exposure times. A relative flight altitude above the strips of terrain captured by the respective sensor line is assigned to the individual sensor lines. Furthermore, a compensation factor is separately determined for each of the individual sensor lines, wherein the factor depends on an air speed of the flying object, a focal length of the aerial camera and the relative flight altitude assigned to the respective sensor line, and corrects the distortion in the aerial photograph for the lines based on the respective compensation factor.
摘要:
The invention relates to a method for correcting a distortion in an aerial photograph caused by a flight movement in the forward direction. The aerial photograph is captured by a surface sensor, the sensor lines of which sensor are exposed at different, successive exposure times, so that each individual sensor line senses a strip of terrain of the terrain flow over at the different exposure times. A relative flight altitude above the strips of terrain captured by the respective sensor line is assigned to the individual sensor lines. Furthermore, a compensation factor is separately determined for each of the individual sensor lines, wherein the factor depends on an air speed of the flying object, a focal length of the aerial camera and the relative flight altitude assigned to the respective sensor line, and corrects the distortion in the aerial photograph for the lines based on the respective compensation factor.
摘要:
A device having a scan function comprising an electro-optical distance measuring element having a laser axis as the target axis, a motorized optical deflection unit, which deflects the target axis by a deflection angle, and an angle measuring element for determining at least one angular position of the deflection unit. First measurement of angle coordinates of a reticle in a first angular position of the deflection unit as the first position, and second measurement of angle coordinates of the reticle in a second angular position of the deflection unit as the second position. The first and second measurements of the reticle are carried out on the basis of images taken with a camera, the optical axis of which is deflected by the deflection unit, and calibration parameters are determined on the basis of the angular positions and the angular coordinates in the first and second positions.
摘要:
An object is highly precisely moved by an industrial robot to an end position by the following steps, which are repeated until the end position is reached within a specified tolerance: Recording a three-dimensional image by means of a 3-D image recording device. Determining the present position of the object in the spatial coordinate system from the position of the 3-D image recording device the angular orientation of the 3-D image recording device detected by an angle measuring unit, the three-dimensional image, and the knowledge of features on the object. Calculating the position difference between the present position of the object and the end position. Calculating a new target position of the industrial robot while taking into consideration the compensation value from the present position of the industrial robot and a value linked to the position difference. Moving the industrial robot to the new target position.
摘要:
A device having a scan function comprising an electro-optical distance measuring element having a laser axis as the target axis, a motorized optical deflection unit, which deflects the target axis by a deflection angle, and an angle measuring element for determining at least one angular position of the deflection unit. First measurement of angle coordinates of a reticle in a first angular position of the deflection unit as the first position, and second measurement of angle coordinates of the reticle in a second angular position of the deflection unit as the second position. The first and second measurements of the reticle are carried out on the basis of images taken with a camera, the optical axis of which is deflected by the deflection unit, and calibration parameters are determined on the basis of the angular positions and the angular coordinates in the first and second positions.
摘要:
The invention relates to a method and a system for the high-precision positioning of at least one object in a final location in space. An object (12) is gripped and held by the industrial robot (11) within a gripping tolerance. A compensating variable, which corrects the gripping tolerance, is determined for the industrial robot (11). The object (12) is adjusted with high precision into a final location by the following steps, which repeat until reaching the final location at a predetermined tolerance: recording of image recordings by recording units (1a, 1b); determining the current location of the object (12) in the spatial coordinate system from the positions (Pa, Pb) of the recording units (1a, 1b), the angular orientations of cameras (2a, 2b) of the recording units (1a, 1b) which are detected by angle measuring units (4a, 4b), the image recordings, and the knowledge of features (13) on the object (12); calculating the location difference between the current location of the object (12) and the final location; calculating a new target position of the industrial robot (11) in consideration of the compensating variable from the current position of the industrial robot (11) and a variable which is linked to the location difference; adjusting the industrial robot (11) into the new target position.