Abstract:
An image processing system is adapted to compress a captured image having a plurality of regions of interest (ROIs). The image compression device includes an image dividing unit, a resolution distribution unit and an encoder. The image dividing unit divides the captured image into a number of blocks according to a predetermined size. The resolution distribution unit distributes a display resolution to each ROI of the captured image according to predetermined display information which includes a position and a resolution level of each ROI. The resolution distribution unit further obtains the blocks covered by each ROI according to the position of each ROI. The encoder separately encodes each block in the captured image according to the resolution level of each block using predetermined rules to obtain compression strings of each block, and generates compression image based on the compression strings and the predetermined display information.
Abstract:
A manufacturing machine for processing a product includes a frame, a processing device, an input conveyor belt, an output conveyor belt, two work-stations, two manipulators, and two work-stations. The processing device processes the product. The input conveyor belt transfers the product to the processing device. The output conveyor belt transfers the product after the product being processed. Two work-stations load the product. The two manipulators take the product from the input conveyor belt to the two work-stations, and take the product from the two work-stations to the output conveyor.
Abstract:
A base station apparatus includes a primary transceiver and a processing unit for controlling the primary transceiver to communicate with the related communication apparatuses during a full scan period. The full scan period includes at least one sub-scan period, during one sub-scan period, the processing unit performs a primary communication test between the primary transceiver and each of the related communication apparatuses, judges whether the primary communication test has failed, and determines the corresponding communication apparatus as a failed communication apparatus if the primary communication test has failed. The processing unit further performs a secondary communication test between the primary transceiver and each failed communication apparatus in the previous sub-scan period during a next sub-scan period.
Abstract:
An image processing apparatus includes a reader, a plurality of matrix modules, a selector, and a controller. The reader is configured for reading data of each pixel of a binarized image. The plurality of matrix modules is configured for performing filtering operations to the data based on a control signal, the plurality of matrix modules serially connected, and a first one of the series being connected to the reader. The selector is configured for selecting one of the plurality of matrix modules based on the control signal and outputting filtered results from the selected one of the plurality of matrix modules. The controller is configured for generating the control signal. An image processing method is also provided.
Abstract:
An exemplary system for calculating the number of conductive particles dispersed in an anisotropic conductive film includes an image capturing device and an image processing device. The image capturing device captures a color image of the anisotropic conductive film. The image processing device processes the color image to generate a first binary image. The second binary image includes a plurality of first objects. The first objects occupy a first area in the first binary image. The image processing device processes the first binary image to generate a second binary image having different size with respect to the first binary image by a predetermined value. The second binary image includes a plurality of second objects. The second objects occupy a second area in the second binary image. The image processing device calculates a number of the conductive particles according to the first area, the second area, and the predetermined value.
Abstract:
A burr detection apparatus includes an imaging unit and a detection unit. The imaging unit captures an original image of a stencil. The original comprises black and white pixels. The detection includes a CPU and a memory. The CPU includes an extracting module, a deciding module, a counting module, and a comparing module. The extracting module obtains a matrix image with N*N pixels, wherein N is an odd number. The deciding module decides whether the center pixel of the matrix image is a black pixel. The counting module obtains a black pixel total counted among marginal pixels which position in the margin of the matrix image in a predetermined rule. The comparing module compares the black pixel total with a predetermined threshold number, and determines that the part of the stencil corresponding to the matrix image has a burr when the black pixel total is less than the threshold number.
Abstract:
According to one aspect, a method for identifying an object in an image includes steps of determining a center of the object; calculating a radius for scanning the image; scanning along a scan circle defined by the center and the radius; and identifying the object according to scanned data of the image along the scan circle.
Abstract:
An optical system includes a first set of cameras and a second set of cameras, and an optical assembly. The first set of cameras receive first light originating from each of a set of first portions of a printed circuit board. The first light transmits along a first optical path defined between each of the set of first portions and each of the first set of cameras. The second set of cameras receive second light originating from each of a set of second portions of the printed circuit board. The second light travels along a second optical path defined between each of the set of second portions and each of the second set of cameras. The optical assembly is capable of directing the first light and the second light toward the first set of cameras and the second between the printed circuit board respectively.
Abstract:
An electronic apparatus and method obtains an original image, converts the original image into gray level to determine a gray level distribution of the original image, and defines a fuzzy region and a flat region and a fuzzy region according to the gray level distribution and a binary threshold. The electronic apparatus and method compares the pixel gray values in the fuzzy region with pixel gray values in the flat region to re-define the pixel gray values in the fuzzy region according to the comparison and a formula, and binarizes the original image to output an binarized image.
Abstract:
An imaging system uses optical modules to capture images of a subject. The optical modules are fixed on a bearing plate of the imaging system by a fastening element of the imaging system. The fastening element is removable and fixed on the support plate. Each of the optical modules has an optical surface. The fastening element has a bevel attached to all the optical surfaces of the optical modules so that all the optical surfaces are coplanar.