Abstract:
The desulfurization of both inorganic and organic sulfur constituents of coal by treating the coal in a liquid fused salt bath in the presence of chlorine to react the sulfur containing constituents with chlorine to form chlorides and elemental sulfur. The liquid fused salt bath is comprised of the chlorides of ferric iron, alkali metals, alkaline earth metals, ammonia, and zinc.
Abstract:
A fuel cell in which carbon and water react to form hydrogen or water. The cells utilize electrolyte materials that hold or coordinate water to allow the useful reaction of carbon and water at moderate temperatures without the use of expensive pressure reactors. Activated carbon or carbon recovered from organic waste is used to fuel these cells to produce hydrogen gas or carbon dioxide and power at moderate temperatures and at very low cost.
Abstract:
Methods of enhancing the segregation roast through the use of microwave radiation and chloride ions are disclosed. The processes provide means of recovering metals trapped in ores and slags by reaction of these materials with carbon, chloride and water using microwave radiation as the primary energy source. The metals may be present in starting materials such as metallic sulfides, slags, metallic oxides such as laterites, magnetites, iron oxides, silicates and carbonates. The metals are reduced and can be recovered by separation from the gangue. Water, carbon and chloride can be recycled to the reaction to reduce costs.
Abstract:
The invention provides methods for extracting energy from organic materials through the production of carbon and water by contacting the organic material with a carbon-oxide gas such as carbon dioxide and/or carbon monoxide at a temperature between about 200° C. and about 600° C. The reactions may be enhanced through the use of microwave irradiation, catalysts and pressure. These methods are helpful in the production of energy while utilizing carbon dioxide and carbon monoxide gases and limiting the landfill of organic materials.
Abstract:
A process is disclosed for separating cuprous chloride from a solution comprising cuprous chloride and at least one metal chloride compatible with the solubility of cuprous chloride, the process comprising crystallizing the cuprous chloride from the solution in the presence of cupric chloride in an amount such that the cupric chloride to compatible metal chloride mole ratio is at least about 0.1. In one embodiment, the process is employed for recovering substantially pure copper from copper sulfide concentrates, generally containing one or more metal impurities, the basic process comprising, leaching the copper sulfide concentrates with ferric chloride to produce a leach solution comprising cuprous chloride, cupric chloride, ferrous chloride and the metal impurities, crystallizing a substantial portion of the cuprous chloride from the leach solution in order to produce cuprous chloride crystals and a mother liquor, separating the crystallized cuprous chloride from the mother liquor, reducing the crystallized cuprous chloride to substantially pure elemental copper, treating a substantial portion of the mother liquor with oxygen and hydrochloric acid to produce iron oxide, cupric chloride and ferric chloride, and treating the remainder of the mother liquor in order to remove the impurities.
Abstract:
Anhydrous zinc chloride is produced from an aqueous feed solution containing zinc chloride from an aqueous feed solution containing zinc chloride. The zinc chloride is extracted onto an organic extractant known to the art such as tributyl phosphate, primary, secondary or tertiary amines, and quaternary amine salts. The loaded extractant is then stripped with aqueous stripping solution containing ammonium chloride and ammonium hydroxide. The zinc ammine chloride formed in this aqueous stripping solution is separated from the stripping solution and can then be heated to form anhydrous zinc chloride and ammonia. This anhydrous zinc chloride is suitable as a feed material to a fused salt electrolysis process for the production of zinc.
Abstract:
Copper powder is produced from brass by reacting the brass with hydrochloric acid in an oxygen-free atmosphere at a temperature of at least 70.degree. C. until the non-copper metals and impurities of the brass are dissolved, oxidizing at least 10 percent by weight of the resulting copper to copper oxides, grinding the copper-copper oxide to a powder and removing the copper oxides of the powder to obtain a pure copper powder.
Abstract:
A process for the recovery of molybdenum and rhenium from their sulfide ores which comprises subjecting the ores to microwave energy in the presence of oxygen to selectively heat the sulfides to convert them to oxides, and recovering the formed oxides. Alternatively, the sulfides in the ore are selectively heated with microwave energy in the presence of chlorine to convert them to the corresponding chlorides, and the metals recovered from the chlorides.
Abstract:
A process for forming a metal chloride of a metal or its compound comprising forming a liquid fused salt bath mixture of at least two metal chlorides with one of the chlorides being selected from the group consisting of ferric chloride, ferrous chloride, cupric chloride and cuprous chloride, and introducing the metal or compound into the liquid fused salt bath in the presence of a chlorine source to form the metal chloride and elemental sulfur, and recovering the formed chloride from the liquid fused salt bath mixture. Chlorine gas or sulfur chloride may be introduced into the bath as an additional source of chlorine for reaction with the metal and for the generation of a portion of the ferrous chloride or cuprous chloride into ferric chloride or cupric chloride.