Abstract:
The present invention relates to novel human secreted proteins and isolated nucleic acids containing the coding regions of the genes encoding such proteins. Also provided are vectors, host cells, antibodies, and recombinant methods for producing human secreted proteins. The invention further relates to diagnostic and therapeutic methods useful for diagnosing and treating diseases, disorders, and/or conditions related to these novel human secreted proteins.
Abstract:
Human chemotactic cytokine III polypeptides and DNA (RNA) encoding such chemotactic cytokines and a procedure for producing such polypeptides by recombinant techniques is disclosed. Also disclosed are methods for utilizing such chemotactic cytokines for the treatment of leukemia, tumors, chronic infections, auto-immune disease, fibrotic disorders, wound healing and psoriasis. Antagonists against such chemotactic cytokines and their use as a therapeutic to treat rheumatoid arthritis, auto-immune and chronic and acute inflammatory and infective diseases, allergic reactions, prostaglandin-independent fever, cerebral ischemia, glomerulonephritis, HTLV-1 related diseases and bone marrow failure are also disclosed. Also disclosed are diagnostic assays for detecting diseases related to mutations in the nucleic acid sequences and altered concentrations of the polypeptides. Also disclosed are diagnostic assays for detecting mutations in the polynucleotides encoding chemotactic cytokine III and for detecting altered levels of the polypeptide in a host.
Abstract:
This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as “KGF-2” also formerly known as Fibroblast Growth Factor 12 (FGF-12). This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.
Abstract:
A human epidermal differentiation factor polypeptide and DNA (RNA) encoding such polypeptide and procedure for producing such polypeptide by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptide for treating and/or preventing skin diseases. Diagnostic assays for detecting mutations in a nucleic acid sequence encoding a polypeptide of the present invention and for detecting altered levels of the polypeptide of the present invention are also disclosed.
Abstract:
The present invention relates to a novel BAIT protein which is a member of serpin superfamily which is expressed primarily in brain tissue. In particular, isolated nucleic acid molecules are provided encoding the human and recombinant methods for producing the same. The invention further relates to screening methods for identifying agonists and antagonists of BAIT activity. Also provided are diagnostic methods for detecting nervous system-related disorders and therapeutic methods for treating nervous system-related disorders. Additionally, the present invention is related to methods of treating patients with BAIT polynucleotides or polypeptides, wherein said patients have had seizures or epilepsy.
Abstract:
The present invention provides polynucleotide sequences of the genome of Staphylococcus aureus, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynucleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.
Abstract:
A human epidermal differentiation factor polypeptide and DNA (RNA) encoding such polypeptide and procedure for producing such polypeptide by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptide for treating and/or preventing skin diseases. Diagnostic assays for detecting mutations in a nucleic acid sequence encoding a polypeptide of the present invention and for detecting altered levels of the polypeptide of the present invention are also disclosed.
Abstract:
A human ECM-1 polypeptide and DNA (RNA) encoding such polypeptide and a procedure for producing such polypeptide by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptide for stimulating the differentiation in growth of osteoblasts and osteoclasts, which may be used to promote the healing of bone fractures and de novo bone formation, for osteoporosis, for and to promote angiogenesis. Antagonists to the polypeptide of the present invention are also disclosed which may be utilized to treat osteodystrophy, osteohypertrophy, osteoma, osteoblastoma and cancers. Diagnostic assays for identifying mutations in nucleic acid sequence encoding a polypeptide of the present invention.
Abstract:
The present invention relates to novel vaccines for the prevention or attenuation of infection by Streptococcus pneumoniae. The invention further relates to isolated nucleic acid molecules encoding antigenic polypeptides of Streptococcus pneumoniae. Antigenic polypeptides are also provided, as are vectors, host cells and recombinant methods for producing the same. The invention additionally relates to diagnostic methods for detecting Streptococcus nucleic acids, polypeptides and antibodies in a biological sample.
Abstract:
A portable spreader of small particulate materials comprising a container having a wide mouth neck. The container holds the small particulate materials therein. A cap has a top opening. The cap engages with the wide mouth neck of the container. An electronic device is built onto the cap over the top opening, for distributing the small particulate materials away from the container, when the container held in a hand of a person is inverted.