Abstract:
A robot hand apparatus includes a holder having a bendable sucking surface that sucks an object; a magnetic elastic body arranged at the holder and formed of an elastic material containing magnetic particles; and a magnetic-field generator that is arranged at the holder and applies a magnetic field to the magnetic elastic body to change a coefficient of elasticity of the magnetic elastic body. When the magnetic-field generator applies a magnetic field to the magnetic elastic body, a flexible portion and a hardened portion having a bigger coefficient of elasticity than that of the flexible portion are formed in the magnetic elastic body. When the holder holds the object, in a state in which the sucking surface is bent at a position corresponding to the flexible portion, a region of the sucking surface between the position and a distal end of the holder sucks the object.
Abstract:
A robot hand apparatus includes a first holder having a bendable first sucking surface that sucks an object using negative pressure; and a second holder having a bendable second sucking surface that sucks the object using negative pressure. The first holder and the second holder are arranged such that the first sucking surface opposes the second sucking surface. When the first holder and the second holder hold the object, in a state in which the first sucking surface is bent at a first position and the second sucking surface is bent at a second position, the object is sucked to a region of the first sucking surface between the first position and a distal end of the first holder, and the object is sucked to a region of the second sucking surface between the second position and a distal end of the second holder.
Abstract:
A robot includes a tractor, a walker, an input device, and a controller. The tractor includes a connector and pulls a user through the connector. The walker includes wheels for moving the tractor and one or more brakes for the wheels and is coupled to the tractor. The input device receives an instruction to operate at least one of the tractor and the walker. In response to reception of the instruction by the input device, the controller determines whether or not to permit the tractor and/or the walker to perform a process based on the instruction, in accordance with a current state of the robot, the current state being one of a plurality of states of the robot. Each state is represented by using values of items, one of the items being an item indicating whether or not the one or more brakes are applied to the wheels.
Abstract:
A robot hand apparatus includes a first holder having a first sucking surface that is bendable at any position and that sucks an object using negative pressure; a second holder arranged to oppose the first sucking surface of the first holder; and a driving mechanism that changes a distance between the first holder and the second holder to sandwich the object between the first holder and the second holder.
Abstract:
A robot includes a motion mechanism capable of operating in accordance with each of a first motion pattern for supporting a user with a first motion representing a standing-up motion and a second motion pattern for supporting a user with a second motion representing a sitting-down motion, a battery that supplies electric energy to the motion mechanism, a control unit that determines a multiple-motion availability index indicating the availability of an operation in accordance with a multiple-motion pattern including the first and second motion patterns on the basis of the battery level and the amounts of energy charge in the battery required for the operations performed by the motion mechanism in accordance with the first and second motion patterns if the control unit detects that the battery level is a first threshold value or lower, and a presentation unit that presents the multiple-motion availability index determined by the control unit.
Abstract:
A robot includes an arm mechanism that operates in accordance with a first motion pattern for supporting a user with a standing-up motion which starts in a sitting posture and finishes in a standing posture, a control unit that (i) acquires first information used to identify a predetermined position of the arm mechanism corresponding to a half-crouching posture of the user during a motion in accordance with the first motion pattern and (ii) detects whether the current position of the arm mechanism operating in accordance with the first motion pattern is included in a first range including the predetermined position identified by the first information, and a presentation unit that presents a first signal if the control unit detects that the position of the arm mechanism is included in the first range.
Abstract:
A holding mechanism holds a care-receiver, a traction mechanism that is connected to the holding mechanism, and the traction mechanism pulls the holding mechanism so that the holding mechanism draws a predetermined path. On the basis of a position of the holding mechanism detected by a position sensor and a force detected by a force sensor, if the position of the holding mechanism is not on the predetermined path, a controller controls the traction mechanism so that the holding mechanism draws the predetermined path by changing the position of the holding mechanism to a position on the predetermined path at a time after the time at which the position is detected.