Abstract:
A method for producing an electrolytic capacitor includes: preparing an anode foil, a cathode foil, and a fibrous structure, the anode foil having a porous portion including a dielectric layer; preparing a conductive polymer-containing liquid, the conductive polymer-containing liquid containing a conductive polymer component and a first solvent; forming a separator by removing at least a part of the first solvent after applying the conductive polymer-containing liquid to the fibrous structure; forming a capacitor element from the anode foil, the separator, and the cathode foil; and impregnating the capacitor element with an electrolytic solution. An electrical conductivity of the electrolytic solution at 30° C. is 3.0 mS/cm or more.
Abstract:
A method for producing an electrolytic capacitor according to the present disclosure is characterized by including a first step of preparing a capacitor element that includes an anode body on which a dielectric layer is formed; a second step of impregnating the capacitor element with a first treatment solution containing a first solvent and a conductive polymer; a third step of impregnating, after the second step, the capacitor element with a second treatment solution containing a second solvent; and a fourth step of impregnating, after the third step, the capacitor element with an electrolyte solution containing a third solvent, both the second solvent and the third solvent being a protic solvent.
Abstract:
An electrolytic capacitor includes an electrode foil and a lead member connected to the electrode foil. The electrode foil has a first principal surface and a second principal surface opposite to the first principal surface. The electrode foil and the lead member are connected by a caulking part in an overlapping part in which the first principal surface of the electrode foil and the lead member overlap each other. The caulking part has a through-hole penetrating the electrode foil and the lead member. The electrode foil in the caulking part includes a first folded part that is folded back at a peripheral edge portion of the through-hole to be disposed on the second principal surface. The lead member in the caulking part includes (i) a penetrating part that penetrates the electrode foil and (ii) a second folded part that is folded back at an end portion of the penetrating part to be disposed on the second principal surface. The penetrating part includes an inner wall of the through-hole. The second folded part covers the first folded part.
Abstract:
A power storage device has a power storage element and an electrolytic solution. The power storage element includes an anode body, a cathode body opposed to the anode body, and a separator interposed between the anode body and the cathode body. The separator includes a separator base material and a conductive polymer deposited on the separator base material. The power storage element is impregnated with the electrolytic solution. The separator has a first surface layer, which includes a first surface opposed to the anode body, and a second surface layer, which includes a second surface opposed to the cathode body. The first surface layer has a first region in which the conductive polymer is deposited, and the second surface layer has a second region in which the conductive polymer is not deposited.
Abstract:
An electrolytic capacitor includes a capacitor element, a case housing the capacitor element, and a first heat radiation layer having an insulating property. The first heat radiation layer covers at least part of the capacitor element. A thermal conductivity λC of the case in a thickness direction is greater than or equal to 1 W/m·K. A thermal emissivity ε1 of the first heat radiation layer is greater than or equal to 0.7.
Abstract:
A method for producing an electrolytic capacitor according to the present disclosure includes a first step of preparing a capacitor element that includes an anode body having a dielectric layer; a second step of impregnating the capacitor element with a first treatment solution containing a conductive polymer and a first solvent; and a third step of impregnating the capacitor element with an electrolyte solution after the second step, the capacitor element being, in the third step, impregnated with the electrolyte solution while including a liquid.
Abstract:
An electrical storage device includes an electrical storage element and an electrolytic solution. The electrical storage element is formed of an anode body, a cathode body facing the anode body, and a separator interposed between the anode body and the cathode body. The separator includes a separator substrate and a conductive polymer adhering to the separator substrate. The electrical storage element is impregnated with the electrolytic solution. The separator includes a first surface layer having a first surface facing the anode body and a second surface layer having a second surface facing the cathode body. The first surface layer includes a first region that is not provided with the conductive polymer, and the second surface layer includes a second region provided with the conductive polymer.
Abstract:
An electrolytic capacitor includes a capacitor body and a seating plate having an attachment surface to which the capacitor body is attached. The seating plate has a pair of through-holes into which a pair of lead terminals is inserted, respectively. A mounting surface of the seating plate has a pair of terminal storage grooves and a projection. Distal end portions of the pair of lead terminals inserted into the pair of through-holes, respectively, to be bent along the mounting surface are inserted into the pair of terminal storage grooves, respectively. The projection protrudes from a portion including at least an intermediate portion between the pair of through-holes. The projection includes a narrow portion and wide portions. The narrow portion is positioned between the pair of through-holes. The wide portions are disposed respectively at both sides with respect to the narrow portion in a second axis intersecting a first axis along which the pair of through-holes are arranged. A width of the wide portion in a first axis is larger than a width of the narrow portion in the first axis.
Abstract:
An electrolytic capacitor includes a capacitor element, a first current collector, and a case. The capacitor element includes a wound body in which a first electrode foil and a second electrode foil are wound. The first electrode foil and the second electrode foil face each other. The first current collector is connected to the first electrode foil. The case houses the capacitor element and the first current collector. The first electrode foil includes a first facing portion that faces the second electrode foil and a first non-facing portion that does not face the second electrode foil. The first non-facing portion is located at a first end portion in a winding axis of the wound body. The first current collector is disposed in a vicinity of the first end portion of the wound body to be connected to the first non-facing portion of the first electrode foil.
Abstract:
A method for manufacturing an electrolytic capacitor includes preparing a capacitor element that includes an anode body having a dielectric layer, and a separator including a cellulose fiber; impregnating the capacitor element with a first treatment solution containing a first solvent and conductive polymer particles; and impregnating, after impregnating the capacitor element with the first treatment solution, the capacitor element with a second treatment solution containing a second solvent at a state where the capacitor element includes the first solvent.