Abstract:
An imaging apparatus includes a unit pixel including a pixel electrode; a counter electrode facing the pixel electrode; a photoelectric conversion layer disposed between the pixel electrode and the counter electrode; and a computing circuit that acquires a first signal upon a first voltage being applied between the pixel electrode and the counter electrode, the first signal corresponding to an image captured with visible light and infrared light and a second signal upon a second voltage being applied between the pixel electrode and the counter electrode, the second signal corresponding to an image captured with visible light, and generates a third signal by performing a computation using the first signal and the second signal, the third signal corresponding to an image captured with infrared light.
Abstract:
A photoelectric conversion material includes a compound represented by Formula (1): where, X is selected from the group consisting of a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, and a cyano group; and Y represents a monovalent substituent represented by Formula (2): where, R1 to R10 each independently represent a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, or an aryl group; or two or more of R1 to R10 bond to each other to form one or more rings, and the remainders each independently represent a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, or an aryl group; * denotes the binding site of Y in Formula (1); and Ar1 is selected from the group consisting of structures represented by Formulae (3): where ** denotes a binding site of Ar1 with N in Formula (2).
Abstract:
A light-emitting device includes: a light-emitting element including a transparent electrode, a reflecting electrode, and an organic layer that includes a light-emitting layer; a transparent multilayer body including a low-refractive-index layer and a high-refractive-index layer, the high-refractive-index layer being provided in contact with the transparent electrode; a first uneven structure at an interface between the low-refractive-index layer and the high-refractive-index layer, the first uneven structure including depressions and projections, a height of each of the projections relative to the depressions being 400 nm or more; and a second uneven structure at an interface between the reflecting electrode and the organic layer, the second uneven structure including depressions and projections, a height of each of the projections relative to the depressions in the second uneven structure being 20 nm or more and 100 nm or less.
Abstract:
A method for manufacturing a photoelectric conversion element includes providing a base structure including a semiconductor substrate having a principal surface, a first electrode located on or above the principal surface, second electrodes which are located on or above the principal surface and which are one- or two-dimensionally arranged, and a photoelectric conversion film covering at least the second electrodes; forming a mask layer on the photoelectric conversion film, the mask layer being conductive and including a covering section covering a portion of the photoelectric conversion film that overlaps the second electrodes in plan view; and partially removing the photoelectric conversion film by immersing the base structure and the mask layer in an etchant.
Abstract:
A method for manufacturing a photoelectric conversion element includes providing a base structure including a semiconductor substrate having a principal surface, a first electrode located on or above the principal surface, second electrodes which are located on or above the principal surface and which are one- or two-dimensionally arranged, and a photoelectric conversion film covering at least the second electrodes; forming a mask layer on the photoelectric conversion film, the mask layer being conductive and including a covering section covering a portion of the photoelectric conversion film that overlaps the second electrodes in plan view; and partially removing the photoelectric conversion film by immersing the base structure and the mask layer in an etchant.
Abstract:
An organic EL element according to the present disclosure includes a first electrode having a light-transmission property, a functional layer which is located on the first electrode and which includes a light-emitting layer, and a second electrode which is located on the functional layer, the second electrode having an opening which exposes a part of the functional layer, the second electrode including a scatter reflection surface which scatters and reflects a light emitted from the light-emitting layer, the scatter refection surface opposing to the functional layer.
Abstract:
An imaging device includes at least one unit pixel cell including a photoelectric converter that converts incident light into electric charges. The photoelectric converter includes: a first electrode; a light-transmitting second electrode; a first photoelectric conversion layer disposed between the first electrode and the second electrode and containing a first material having an absorption peak at a first wavelength; and a second photoelectric conversion layer disposed between the first photoelectric conversion layer and the second electrode and containing a second material having an absorption peak at a second wavelength different from the first wavelength. The absolute value of the ionization potential of the first material is larger by at least 0.2 eV than the absolute value of the ionization potential of the second material.
Abstract:
A photoelectric conversion material includes a compound represented by Formula (1): where, X is selected from the group consisting of a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, and a cyano group; and Y represents a monovalent substituent represented by Formula (2): where, R1 to R10 each independently represent a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, or an aryl group; or two or more of R1 to R10 bond to each other to form one or more rings, and the remainders each independently represent a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, or an aryl group; * denotes the binding site of Y in Formula (1); and Ar1 is selected from the group consisting of structures represented by Formulae (3): where ** denotes a binding site of Ar1 with N in Formula (2).
Abstract:
An imaging device includes at least one unit pixel cell including a photoelectric converter that converts incident light into electric charges. The photoelectric converter includes: a first electrode; a light-transmitting second electrode; a first photoelectric conversion layer disposed between the first electrode and the second electrode and containing a first material having an absorption peak at a first wavelength; and a second photoelectric conversion layer disposed between the first photoelectric conversion layer and the second electrode and containing a second material having an absorption peak at a second wavelength different from the first wavelength. The absolute value of the ionization potential of the first material is larger by at least 0.2 eV than the absolute value of the ionization potential of the second material.
Abstract:
An imaging apparatus includes a unit pixel including a pixel electrode; a counter electrode facing the pixel electrode; a photoelectric conversion layer disposed between the pixel electrode and the counter electrode; and a computing circuit that acquires a first signal upon a first voltage being applied between the pixel electrode and the counter electrode, the first signal corresponding to an image captured with visible light and infrared light and a second signal upon a second voltage being applied between the pixel electrode and the counter electrode, the second signal corresponding to an image captured with visible light, and generates a third signal by performing a computation using the first signal and the second signal, the third signal corresponding to an image captured with infrared light.