Abstract:
A three-dimensional display device configured to display a main image and an additional image on a screen includes a display region candidate decider that decides one candidate region from a plurality of region candidates for the additional image to be superimposed on the main image on the screen, a depth suitability determiner that determines whether a difference between a depth of the main image displayed at a boundary region and a depth of the additional image is within a predetermined tolerance range, and an image composer that, when the difference in depth between the depth of the main image displayed at the boundary region and the depth of the additional image is within the tolerance range, superimposes the additional image upon the main image at the candidate region, thereby composing a composite image of the main image and the additional image, and displays the composite image on the screen.
Abstract:
A training apparatus includes a display that displays a video image including an image of a moving object, a rotation speed acquirer that acquires a rotation speed of a pedal driven by a user, and a control circuit that changes a moving speed of the object in the video image. The control circuit controls the moving speed as follows. The moving speed of the object in the video image is increased at an acceleration α1 (>0). If an increase in the pedal rotation speed occurs after the moving speed of the object is increased, the moving speed of the object is increased at an acceleration α2 (
Abstract:
An electrical stimulation apparatus includes a sleep depth determiner that determines a sleep depth by using biological information of a user who is sleeping; an electrical muscular stimulation intensity determiner that determines an electrical muscular stimulation intensity on basis of the sleep depth; and an output that output electrical muscular stimulation by using electrodes arranged on a skin of the user at the electrical muscular stimulation intensity determined by the electrical muscular stimulation intensity determiner.
Abstract:
An input apparatus for controlling an information terminal includes a gesture detecting unit that detects a rotational movement of a wrist of a user about a lower arm of the user and an output unit that outputs a control command for controlling a device to be controlled to the device to be controlled on the basis of a rotational direction of the detected rotational movement. If the gesture detecting unit detects a first rotational movement in a first rotational direction and thereafter detects a second rotational movement in a second rotational direction that is opposite to the first rotational direction, the output unit outputs a second control command corresponding to the second rotational direction without outputting a first control command corresponding to the first rotational direction.
Abstract:
Provided is a myoelectric potential measurement device that recognizes a user arm movement, including a bracelet having a plurality of electrodes, at least one memory, and a processor. The processor: uses the bracelet having the plurality of electrodes, which come into contact with the arm of the user, to measure a myoelectric potential at each of the plurality of electrodes; detects a measurement state when the each myoelectric potential is being measured; specifies at least one preferred electrode, which has a portion of the arm of the user positioned vertically thereunder, from among the plurality of electrodes in accordance with the measurement state, and weights the each myoelectric potential measured by the specified at least one preferred electrode, with respect to the each myoelectric potential measured by electrodes other than the preferred electrode from among the plurality of electrodes; and uses the weighted myoelectric potential to recognize the movement of the user, and outputs a recognition result.
Abstract:
An assist device includes an upper-body belt attached to the upper body of a user, first and second belts attached to the knees, a first wire coupling the upper-body belt to the first belt, a second wire crossing the first wire, a third wire coupling the upper-body belt to the second belt, a fourth wire crossing the third wire, and a motor coupled to one end of each of the first to fourth wires. When assisting users with walking, tensions equal to a first threshold value or greater are applied to one of the first and second wires and one of the third and fourth wires by the motor at different times. When detecting slacking of the upper-body belt, tensions equal to the first threshold value or greater are simultaneously applied to one of the first and second wires and one of the third and fourth wires by the motor.
Abstract:
An actuator body includes a tube that has a space therein and is wound spirally about a first axis. The tube has a plurality of first portions and a plurality of second portions, the tube has one or more grooves in at least one of an outer circumferential surface and an inner circumferential surface thereof, and the one or more grooves are provided spirally about a longitudinal axis of the tube, the space is in contact with the inner circumferential surface, and the outer circumferential surface is a surface opposite to the inner circumferential surface, each of the plurality of first portions has higher torsional rigidity than each of the plurality of second portions, the plurality of first portions are aligned along the first axis, and the plurality of first portions do not overlap the plurality of second portions.
Abstract:
A muscle fatigue output device is provided with a myoelectric measurement unit that acquires myoelectricity of a user, and a main control unit that determines fatigue of a muscle of the user on the basis of the myoelectricity. The main control unit (a) uses the myoelectricity to acquire a value for a frequency characteristic of the myoelectricity, (b) uses the myoelectricity to acquire a value for an amplitude characteristic of the myoelectricity, (c) acquires a ratio between the value for the frequency characteristic and the value for the amplitude characteristic as an index for the fatigue of the muscle of the user, and (d) outputs information regarding the fatigue of the muscle of the user, on the basis of the index for the fatigue of the muscle of the user.
Abstract:
A non-contact blood-pressure measuring device includes: an image acquiring section that acquires a skin image obtained by capturing skin of a user; a pulse-wave timing calculating section that calculates, as a pulse-wave timing, time information indicative of a time at which time-varying luminance in the skin image reaches a peak; a millimeter-wave acquiring section that acquires a signal of a radio wave reflected by the user; a heartbeat timing calculating section that calculates, as a heartbeat timing, time information indicative of a time at which a time-varying distance to the user obtained on the basis of the signal of the radio wave acquired by the millimeter-wave acquiring section reaches a peak; and a blood-pressure determining section that determines blood pressure of the user on the basis of a time difference between the pulse-wave timing and the heartbeat timing.
Abstract:
A method of determining preservation environment information includes irradiating left and right eyes of a fish with ultraviolet rays, taking ultraviolet images of the fish eyes by one or more ultraviolet cameras, analyzing the ultraviolet images by a computer, determining preservation environment of the fish based on luminance of each of iris portions in the left and right fish eyes, and outputting information representing a determination result to a display.