Abstract:
An inspection system includes an acquisition unit and a determination unit. The acquisition unit acquires an image representing a surface of an object. The determination unit performs color determination processing. The color determination processing is performed to determine a color of the surface of the object based on a plurality of conditions of reflection. The plurality of conditions of reflection are obtained from the image representing the surface of the object as acquired by the acquisition unit, and have a specular reflection component and a diffuse reflection component at respectively different ratios on the surface of the object.
Abstract:
An image forming apparatus includes an imager that is electrically connected to an image sensor disposed at a position where light that has passed through a sample slice is incident on the image sensor, and an illumination system that emits illumination light successively in different illumination directions relative to a sample slice to illuminate the sample slice with the illumination light and that emits a first light having a peak in a first wavelength range and a second light having a peak in a second wavelength range. The image forming apparatus obtains a plurality of first-color images with the image sensor while the sample slice is being illuminated with the first light serving as the illumination light successively in the different illumination directions. The image forming apparatus obtains at least one second-color image with the image sensor while the sample slice is being illuminated with the second light in at least one of the different illumination directions. The image forming apparatus generates a high-resolution image on the basis of the plurality of first-color images and the at least one second-color image.
Abstract:
An inspection system includes an acquisition unit and a determination unit. The acquisition unit acquires an image representing a surface of an object. The determination unit performs color determination processing. The color determination processing is performed to determine a color of the surface of the object based on a plurality of conditions of reflection. The plurality of conditions of reflection are obtained from the image representing the surface of the object as acquired by the acquisition unit, and have a specular reflection component and a diffuse reflection component at respectively different ratios on the surface of the object.
Abstract:
An inspection system includes an acquisition unit and a determination unit. The acquisition unit acquires an image representing a surface of an object. The determination unit performs color determination processing. The color determination processing is performed to determine a color of the surface of the object based on a plurality of conditions of reflection. The plurality of conditions of reflection are obtained from the image representing the surface of the object as acquired by the acquisition unit, and have a specular reflection component and a diffuse reflection component at respectively different ratios on the surface of the object.
Abstract:
An optical device includes a first light source that emits first light, a second light source that emits second light, first and second polarizing beam splitters, a dichroic mirror, a quarter-wave plate that changes the polarization state of light that passes through, a hyperspectral camera, and a visible light camera. The first polarizing beam splitter, the quarter-wave plate, and the dichroic mirror are disposed in an optical path of the first light in stated order. The second polarizing beam splitter and the dichroic mirror are disposed in an optical path of the second light in stated order. The hyperspectral camera receives first specularly reflected light out of first reflected light. The visible light camera receives second diffused light out of second reflected light.
Abstract:
An image measurement device including: light sources that irradiate light beams having different peak wavelengths; a staining method obtaining unit which obtains information indicating a staining method of an inspection specimen; an image obtaining unit which: selects a combination of light sources according to the staining method, based on illumination information; and capture inspection images of the inspection specimen with light beams from the selected light sources, and capture reference images of a reference specimen with light beams from the respective light sources; a calculating unit which calculates a positivity based on the inspection images; and an evaluation unit which associates the staining method of the reference specimen with the combination of light sources to generate the illumination information based on a total value of coefficients in a linear sum of the ortho-normalization base vectors of a spectral distribution of light sources calculated based on the reference images.
Abstract:
An exemplary image forming apparatus according to the present disclosure includes: a light source which irradiates an object with light and of which the orientation and position are fixed; a tilting mechanism which tilts the object at multiple tilt angles; an image sensor which is arranged at a position where the light that has been transmitted through the object is incident, gets tilted along with the object by the tilting mechanism, and captures a plurality of images at the multiple tilt angles; and an image processing section which forms a high-resolution image of the object, having a higher resolution than any of the plurality of images, by synthesizing the plurality of images together.
Abstract:
Provided are an inspection method, a program, and an inspection system capable of improving accuracy of inspecting a color of a surface of an object. The inspection method includes acquisition step and comparison step. Acquisition step is a step of acquiring a target image of a surface of an object obtained by an imaging system imaging the surface of the object illuminated by an illumination system. Comparison step, is a step of comparing a color of an attention region on the target image with a color of a reference region. The reference region is a region of a reference image of a surface of a reference object as a reference of a color of the object, and a region corresponding to a combination of an incident angle of light from the illumination system and a reflection angle of light to the imaging system in the attention region.
Abstract:
An information processing system that appropriately estimates a driving conduct includes: a detector that detects a vehicle environment state, which is at least one of surroundings of a vehicle and a driving state of the vehicle; a behavior learning unit configured to cause a neural network to learn a relationship between the vehicle environment state detected by the detector and a behavior of the vehicle implemented after the vehicle environment state; and a behavior estimation unit configured to estimate a behavior of the vehicle by inputting, into the neural network that learned, the vehicle environment state detected at a current point in time by the detector.
Abstract:
An electronic prepared slide includes: an image sensor that has a light receiving surface and receives, on the light receiving surface, light that has passed through a specimen disposed above the light receiving surface; and a removable nonvolatile transparent film that is disposed on the light receiving surface and seals the light receiving surface.