Abstract:
An image display system includes a body, a first correction unit, and a second correction unit. The body houses a display unit to display an image and projects a virtual image, corresponding to the image, onto a target space using outgoing light of the display unit. The first correction unit corrects for distortion of the image. The second correction unit corrects a display location of the image on the display unit in accordance with an orientation signal representing a change in orientation of the body. Each of divisional areas of a display screen of the display unit is assigned with a distortion correction parameter for correcting for the distortion of the virtual image. The first correction unit applies distortion correction to each of the image regions of the image on the display screen based on a distortion correction parameter assigned to a divisional area where the image region is displayed.
Abstract:
A display apparatus of the present disclosure determines whether or not a route section is a linear section on the basis of positional relationship among nodes within the route section including three or more nodes, and, for a route section which is determined to be a linear section, forms and displays a line connecting a start node with a terminal node of the route section as an AR route.
Abstract:
A map information creation device for presenting information at an appropriate time includes: an operation obtaining unit which obtains operation information indicating (i) each of positions passed through by a movable body that is moved by a user and (ii) a frequency of an operation performed on a device by a user of the movable body when the movable body is at the position; a determining unit which determines, for each of positions on a map, whether or not information presentation is allowed, based on the frequency at the position indicated by the operation information; and a creating unit which creates the map information indicating a result of the determination by the determining unit for each position on the map.
Abstract:
A display device includes a processing circuit and a display. The processing circuit obtains an ambient temperature of a gyro sensor, obtains a sensitivity associated with a temperature range including the ambient temperature, corrects an angular velocity of the gyro sensor in accordance with the sensitivity, estimates a first estimated vehicle orientation based on the angular velocity corrected, estimates a second estimated vehicle orientation based on the angular velocity detected by the gyro sensor, derives a third estimated vehicle orientation by correcting the first estimated vehicle orientation using a position and a speed of vehicle, and updates the sensitivity of the temperature range using a calculated sensitivity that is based on the second estimated vehicle orientation and the third estimated vehicle orientation. The display displays an image that is in accordance with the third estimated vehicle orientation.
Abstract:
A display system of the present disclosure forms an AR route by shifting node information included in road map data to a lane on which a subject vehicle is to travel on the basis of lane information. Thus, it is possible to display the AR route which matches a shape of a route on which the subject vehicle is to travel without providing a feeling of strangeness while resolving inconvenience that the AR route is largely displaced from the route on which the subject vehicle is to travel at positions such as an intersection and a branch point, where a plurality of roads intersect.
Abstract:
A pixel includes: a photoelectric conversion unit that photoelectrically converts incident light and has an upper electrode, a lower electrode, and a photoelectric conversion film interposed between the upper electrode and the lower electrode; an amplifying transistor that outputs a signal according to an amount of a signal charge generated in the photoelectric conversion unit; a charge transfer line that connects the lower electrode and the amplifying transistor; and an output line that outputs the signal from the amplifying transistor, wherein at least a part of the output line is disposed to overlap the lower electrode without another line interposed therebetween.
Abstract:
A display device includes a controller that determines the mode of inclination of a display object that is an image shaped to point to one direction, and a drawing unit that projects light representing the display object in the mode of inclination determined by the controller onto a windshield to cause the light to be reflected off the windshield toward a user in the vehicle to enable the user to visually recognize the display object in the mode of inclination as a virtual image through the windshield. The controller determines the mode of inclination of the display object that points to the one direction as a navigation direction, by controlling yaw and roll angles of the display object depending on the attribute of a path point that is set on the path to navigate the vehicle to a destination.
Abstract:
An image display system includes a display unit displaying an image, a projection unit projecting in a target space a virtual image corresponding to the image with an output light of the display unit, a body unit provided thereto the display unit and the projection unit, and an image producing unit including a first correction unit and a second correction unit. The first correction unit performs a first correction processing of correcting, based on a first orientation signal indicative of a first orientation change of the body unit, a display position of the virtual image in the target space. The second correction unit performs a second correction processing of correcting, based on a second orientation signal indicative of a second orientation change of the body unit which is faster than the first orientation change, the display position of the virtual image in the target space.
Abstract:
A video control device includes a processor and a memory including a program that, when executed, causes the processor to perform operations including: obtaining a position of a vehicle determined by a satellite positioning system; obtaining an estimated position of the vehicle estimated based on dead reckoning; estimating a deviation in an orientation of the vehicle, based on the position of the vehicle determined by the satellite positioning system and the estimated position of the vehicle estimated based on the dead reckoning; calculating an estimated orientation of the vehicle, based on the deviation in the orientation of the vehicle estimated; and outputting the estimated orientation of the vehicle to a video display device that displays information which is based on the orientation of the vehicle.
Abstract:
An image display system includes a display unit displaying an image, a projection unit projecting in a target space a virtual image corresponding to the image with an output light of the display unit, a body unit provided thereto the display unit and the projection unit, and an image producing unit including a first correction unit and a second correction unit. The first correction unit performs a first correction processing of correcting, based on a first orientation signal indicative of a first orientation change of the body unit, a display position of the virtual image in the target space. The second correction unit performs a second correction processing of correcting, based on a second orientation signal indicative of a second orientation change of the body unit which is faster than the first orientation change, the display position of the virtual image in the target space.