摘要:
Disclosed are an insulating material (high-k layer) which includes a fiber assembly mainly composed of a cellulose nanofiber, and an electroconductive metal material supported by the fiber assembly; and a passive element (capacitor) which includes a high-k layer which is composed of the insulating material, and an electroconductive part stacked on the high-k layer.
摘要:
A substrate evaluation chip is used to perform a test for evaluating a thermal characteristic of a mounting substrate that is mountable a power semiconductor. The substrate evaluation chip includes an insulating substrate bonded with the mounting substrate, and a heating pattern that is formed on a surface of the insulating substrate by a metallic film and is arranged by having a predetermined shape that is optimized to beat the insulating substrate more uniformly. The insulating substrate is a substrate in which an insulating film is formed on a surface of a single crystal substrate having a thermal conductivity of 250 [W/mK] or more.
摘要:
A method for synthesizing a copper-silver alloy includes an ink preparation step, a coating step, a crystal nucleus formation step and a crystal nucleus synthesis step. In the ink preparation step, a copper salt particle, an amine-based solvent, and a silver salt particle are mixed, thereby preparing a copper-silver ink. In the coating step, a member to be coated is coated with the copper-silver ink. In the crystal nucleus formation step, at least one of a crystal nucleus of copper having a crystal grain diameter of 0.2 μm or less and a crystal nucleus of silver having a crystal grain diameter of 0.2 μm or less is formed from the copper-silver ink. In the crystal nucleus synthesis step, the crystal nucleus of copper and the crystal nucleus of silver are synthesized.
摘要:
Provided are a metal nanowire production method capable of producing long and thin metal nanowires, and metal nanowires produced thereby. A metal nanowire production method comprising, a step for preparing a solution containing a metal salt, a polymer, at least one selected from a group consisting of halides, sulfides, carbonates, and sulfates, and an aliphatic alcohol, and a step for heating and reacting the solution at the temperature of 100° C. to 250° C. for 10 minutes or more while maintaining a practical shear stress applied to the solution at 10 mPa·m or less, wherein, during the heating and reacting step, ultraviolet-visible absorption spectrum change of the solution is measured, and a reaction time is controlled on the basis of the ultraviolet-visible absorption spectrum information.
摘要:
A method for synthesizing a copper-silver alloy includes an ink preparation step, a coating step, a crystal nucleus formation step and a crystal nucleus synthesis step. In the ink preparation step, a copper salt particle, an amine-based solvent, and a silver salt particle are mixed, thereby preparing a copper-silver ink. In the coating step, a member to be coated is coated with the copper-silver ink. In the crystal nucleus formation step, at least one of a crystal nucleus of copper having a crystal grain diameter of 0.2 μm or less and a crystal nucleus of silver having a crystal grain diameter of 0.2 μm or less is formed from the copper-silver ink. In the crystal nucleus synthesis step, the crystal nucleus of copper and the crystal nucleus of silver are synthesized.
摘要:
A silver particle synthesizing method includes reducing a dispersant from first silver particles each covered with the dispersant to obtain second silver particles. The method further includes synthesizing third silver particles each having a larger particle diameter than the second silver particles by causing a reaction between a silver compound and a reductant in a liquid phase containing the second silver particles.
摘要:
Disclosed are an insulating material (high-k layer) which includes a fiber assembly mainly composed of a cellulose nanofiber, and an electroconductive metal material supported by the fiber assembly; and a passive element (capacitor) which includes a high-k layer which is composed of the insulating material, and an electroconductive part stacked on the high-k layer.
摘要:
A composition for copper patterning and a method of copper patterning using the composition are provided, which composition is excellently safe in copper patterning, sintering at lower temperatures, and capable of forming a highly conducive copper pattern of a desired shape even on a plastic substrate. The composition contains Component A: a copper β-ketocarboxylate compound of formula (1): (R1, R2: H or C1-C6 straight- or C3-C6 branched-hydrocarbon group, etc.); and based on 1 mol of this compound, Component B: an amine compound having a boiling point of not higher than 250° C. at 0.1 to 500 mol; and Component C-1: an organic acid having pKa of not more than 4 at 0.01 to 20 mol, and/or Component C-2: an organic copper compound composed of copper and an organic acid having pKa of not more than 4 at 0.01 to 100 mol. The composition is useful in the field of electronics.
摘要:
Provided is a transparent conductive ink which contains metal nanowires and/or metal nanotubes as a conductive component and can form a coating film which has good conductivity and a high light transmittance property, and also provided is a transparent conductive pattern forming method wherein this transparent conductive ink is used for forming a transparent conductive pattern by simple production steps, to thereby suppress the production cost and environmental load. At least one of metal nanowires and metal nanotubes are dispersed in a dispersion medium containing a shape-holding material which contains an organic compound having a molecular weight in the range of 150 to 500 and which has a viscosity of 1.0×103 to 2.0×106 mPa·s at 25° C., to prepare a transparent conductive ink. A transparent conductive pattern is formed by printing a pattern having an arbitrary shape on a substrate using this transparent conductive ink, subjecting the pattern to a heating treatment to dry the pattern, and subjecting the pattern which has been dried to pulsed light irradiation.