Abstract:
An image display apparatus is provided, in which the generation of discharge can be suppressed and a preferable display image can be obtained. A method of manufacturing an image display apparatus having an airtight container including a rear plate having a plurality of electron-emitting devices and a face plate which is located opposite to the rear plate and has a phosphor and an electroconductive film, includes the steps of, (A) disposing the rear plate having the plurality of electron-emitting devices and the face plate having the phosphor and the electroconductive film such that the rear plate and the face plate are opposite to each other and arranging a plurality of plate shaped spacers between the rear plate and the face plate to assemble the airtight container, and (B) applying an electric field between the rear plate and the face plate in a state that the airtight container is slanted such that a longitudinal direction of the plate-shaped spacers is not perpendicular to a gravitational direction.
Abstract:
An image display apparatus is provided, in which the generation of discharge can be suppressed and a preferable display image can be obtained. A method of manufacturing an image display apparatus having an airtight container including a rear plate having a plurality of electron-emitting devices and a face plate which is located opposite to the rear plate and has a phosphor and an electroconductive film, includes the steps of, (A) disposing the rear plate having the plurality of electron-emitting devices and the face plate having the phosphor and the electroconductive film such that the rear plate and the face plate are opposite to each other and arranging a plurality of plate shaped spacers between the rear plate and the face plate to assemble the airtight container, and (B) applying an electric field between the rear plate and the face plate in a state that the airtight container is slanted such that a longitudinal direction of the plate-shaped spacers is not perpendicular to a gravitational direction.
Abstract:
An image display apparatus is provided, in which the generation of discharge can be suppressed and a preferable display image can be obtained. A method of manufacturing an image display apparatus having an airtight container including a rear plate having a plurality of electron-emitting devices and a face plate which is located opposite to the rear plate and has a phosphor and an electroconductive film, includes the steps of, (A) disposing the rear plate having the plurality of electron-emitting devices and the face plate having the phosphor and the electroconductive film such that the rear plate and the face plate are opposite to each other and arranging a plurality of plate shaped spacers between the rear plate and the face plate to assemble the airtight container, and (B) applying an electric field between the rear plate and the face plate in a state that the airtight container is slanted such that a longitudinal direction of the plate-shaped spacers is not perpendicular to a gravitational direction.
Abstract:
An irregular shift of the electron beam caused by a spacer is compensated without making a design change of the spacer. A rear plate 1 in which an electron source substrate 9 disposed with plural electron-emitting devices 8 emitting the electron is fixed and a face plate 2 in which a metal back 11 for accelerating the electron is formed are disposed in opposition to each other, and these plates are supported by the spacers 3 with constant intervals, and the initial velocity vector of the electron emitted from the electron-emitting device 8 is different according to the distance from the spacer 3.
Abstract:
In an electron beam apparatus including an electron source and an electron beam irradiation member, a potential specifying plate including openings through which an electron transmits is provided between the electron source and the electron beam irradiation member. A spacer is located between the electron beam irradiation member and the potential specifying plate. In the case where a distance between a region between one opening of the potential specifying plate near the spacer and the spacer and the electron beam irradiation member is D1 and a distance between a region between that opening and another opening not near the spacer and the electron beam irradiation member is given by D2, if D1
Abstract:
An image forming apparatus comprises first and second substrates, a support frame arranged between the first and second substrates, and surrounding a space between the first and second substrates, electron emitting devices arranged on the first substrate facing the space, and an image forming member arranged on the second substrate. A spacer is disposed in the space between the first and second substrates, and a conductive film is arranged on the second substrate to surround the image forming member. The conductive film is supplied with a potential lower than that applied to the image forming member, and the spacer has a length greater than that of the image forming member. Each longitudinal end of the spacer is arranged between the inner periphery of the support frame and a respective plane through which a corresponding end of the conductive film extends perpendicularly to a principal surface of the second substrate.
Abstract:
An electron beam device comprising an electron source having an electron-emitting device, a member to be irradiated with an electron beam disposed opposite to the electron source, and an electrically conductive spacer disposed between the electron source and the member to be irradiated with the electron beam, is characterized in that an electrode is disposed along an end portion of the spacer on the electron source side, and the electrode is disposed inside a region of a surface of the end portion of the spacer which is directed toward the electron source side.
Abstract:
A method of fabricating an electron source constituted by a plurality of x-direction wirings arranged on a substrate, a plurality of y-direction wirings crossing the x-direction wirings, an insulating layer for electrically insulating the x- and y-direction wirings, and a plurality of conductive films each of which is electrically connected to the x- and y-direction wirings and has a gap, comprises a conductive film formation step of forming a plurality of conductive films to be connected to the pluralities of x- and y-direction wirings, a grouping step of dividing all the x-direction wirings into a plurality of groups, and a forming step of sequentially performing, for all the groups, a step of simultaneously applying a voltage to all wirings assigned to the same group, thereby forming gaps in the plurality of conductive films. The grouping step includes the steps of assigning a plurality of wirings to each group, and arranging wirings constituting a group between wirings constituting other groups.
Abstract:
In a manufacturing process of an image forming apparatus (electron beam device) using electron emission elements, particularly, surface conduction type electron emission elements, wirings on an electron source substrate on which the wirings and element electrodes are formed are opposite to electrodes for a face plate, and a given voltage is applied between the wirings and the electrodes to thereby generate a discharge phenomenon in advance, thus removing a protrusion or the like. In this way, when an electric field applying process is conducted on the electron source substrate, a factor such as a protrusion in an electron source which induces a discharge phenomenon in driving an electron beam device represented by an image forming apparatus is removed, thus realizing an image forming apparatus excellent in display characteristic with no defective pixel even in image display for a long period of time.
Abstract:
An electron beam device comprising an electron source having an electron-emitting device, a member to be irradiated with an electron beam disposed opposite to the electron source, and an electrically conductive spacer disposed between the electron source and the member to be irradiated with the electron beam, is characterized in that an electrode is disposed along an end portion of the spacer on the electron source side, and the electrode is disposed inside a region of a surface of the end portion of the spacer which is directed toward the electron source side.