摘要:
A polymer pyroelectric infrared sensor having an improved sensitivity and an improved heat resistance is formed by disposing a pyroelectric film having electrodes for taking out a pyroelectric output on both sides so as to face a window for introducing infrared rays. The pyroelectric film comprises a pyroelectric film of vinylidene fluoride copolymer having a crystallinity of 60% or more and a relative dielectric constant of 10 or below at 25.degree. C. and in a low frequency region of 0.1-10 Hz.
摘要:
A core/shell polymer (A), comprising: a rubbery core comprising a crosslinked vinylidene fluoride copolymer (a) having a vinylidene fluoride content of 30-90 wt. % and a shell comprising a vinylidene fluoride polymer (b) having a vinylidene fluoride content which is larger than in the crosslinked vinylidene fluoride copolymer (a) and at least 80 wt. %, in a weight ratio (a)/(b) of 30/70-90/10. The vinylidene fluoride-based core/shell polymer (A) is excellent in mechanical properties including flexibility and resistance to nonaqueous electrolytic solutions, is capable of forming a composite electrode layer showing excellent flexibility and adhesion to an electroconductive substrate in combination with a powder active substance and is therefore suitable for use as a binder for nonaqueous electrochemical devices.
摘要:
A nonaqueous battery, such as a lithium ion battery, is formed from a polymer electrolyte comprising: a vinylidene fluoride copolymer comprises 80 to 97 wt. % of vinylidene fluoride monomer units and 3 to 20 wt. % of units of at least one monomer copolymerizable with the vinylidene fluoride monomer and has an inherent viscosity of 1.5 to 10 dl/g. The polymer electrolyte stably retains the nonaqueous electrolytic solution in a large amount and has excellent strength in this state.
摘要:
A negative electrode material for non-aqueous electrolyte secondary batteries, which is best suited for large current I/O non-aqueous electrolyte secondary batteries represented by those for hybrid electric vehicles (HEVs), which are unlikely to be influenced by the deterioration of battery characteristics due to water, and a production process thereof are provided.The negative electrode material having at least one exothermic peak in the range of not lower than 650° C. and lower than 700° C., and at least one exothermic peak in the range of not lower than 700° C. and lower than 760° C., in differential thermal analysis measured under an air flow. The production process of the negative electrode material for non-aqueous electrolyte secondary batteries is characterized by carbonizing a negative electrode material precursor having an oxygen content of not less than 5% by weight and less than 10% by weight, under an inert gas flow at a rate of not more than 120 ml/g·h, under a pressure of normal pressure to 10 kPa, at a temperature higher than 1100° C. and lower than 1500° C.
摘要:
A solid polymer electrolyte having improved ionic conductivity and adhesion with an electroconductive substrate and also remarkably enhanced heat resistance is formed with a vinylidene fluoride copolymer which contains 50-97 mol. % of vinylidene fluoride monomer and 0.1-5 mol. % of an unsaturated dibasic acid monoester or an epoxy group-containing vinyl monomer and further has been crosslinked, thereby improving the performances of a non-aqueous battery, such as a lithium ion battery.
摘要:
A nonaqueous battery, such as a lithium ion battery, is formed from a polymer electrolyte comprising: a vinylidene fluoride copolymer comprises 90 to 97 wt. % of vinylidene fluoride monomer units and 3 to 10 wt. % of units of at least one monomer copolymerizable with the vinylidene fluoride monomer and has an inherent viscosity of 1.5 to 10 dl/g. The polymer electrolyte stably retains the nonaqueous electrolytic solution in a large amount and has excellent strength in this state.
摘要:
A crystal which can be employed as the active material of a lithium-based battery has an empirical formula of Lix1A2Ni1-y-zCoyBzOa, wherein “x1” is greater than about 0.1 and equal to or less than about 1.3, “x2,” “y” and “z” each is greater than about 0.0 and equal to or less than about 0.2, “a” is greater than about 1.5 and less than about 2.1, “A” is at least one element selected from the group consisting of barium, magnesium, calcium and strontium and “B” is at least one element selected from the group consisting of boron, aluminum, gallium, manganese, titanium, vanadium and zirconium. A method includes combining lithium, nickel, cobalt and at least one element “A” selected from the group consisting of barium, magnesium, calcium and strontium, has at least one element “B” selected from the group consisting of boron, aluminum, gallium, manganese, titanium, vanadium and zirconium, in the presence of oxygen, wherein the combined components have the relative ratio of Lix1:Ax2:Ni1-y-z:Coy:Bz, wherein “x1,” “x2,” “y” and “z” have the values given for the empirical formula shown above.
摘要:
A vinylidene fluoride polymer having good high-temperature coloring resistance is produced through suspension polymerization at 10-100° C. in a mixture solvent of 100 wt. parts of an aqueous medium and 10-50 wt. parts of a halogenated hydrocarbon solvent showing a good dissolving power to both a vinylidene fluoride monomer and a polymerization initiator and represented by a formula of: CX3CX2CHX2, wherein X is a fluorine or chlorine atom, and 7 X's include 4-6 fluorine atoms and 1-3 chlorine atoms. The vinylidene fluoride polymer is characterized by an elutable total organic carbon content in pure water at 95° C. of at most 1.1 &mgr;g/cm2.
摘要翻译:通过在100-100℃的混合溶剂中在10-100℃下悬浮聚合制备具有良好耐高温着色性的偏二氟乙烯聚合物。 水性介质的一部分和10-50wt。 部分卤代烃溶剂对偏二氟乙烯单体和聚合引发剂具有良好的溶解力,并由下式表示:其中X是氟或氯原子,7 X包括4-6个氟原子和1-3个 氯原子。 偏二氟乙烯聚合物的特征在于在95℃的纯水中可洗脱的总有机碳含量最多为1.1mug / cm 2。
摘要:
A pyroelectric infrared sensor includes a package having a light-receiving window, and at least two dual pyroelectric elements arranged in the package, each of the dual pyroelectric elements having first and second unit pyroelectric elements, the first and second unit pyroelectric elements being connected in series or parallel with each other so as to have opposite polarities, wherein the first and second light-receiving electrodes and the first and second back electrodes are formed such that an effective light-receiving electrode area of the first unit pyroelectric element opposing a central portion of the light-receiving window is smaller than an effective light-receiving electrode area of the second unit pyroelectric element opposing a peripheral portion of the light-receiving window. A difference between secondary infrared rays incident on the first and second unit pyroelectric elements which is caused by a difference between angles of visibility of these elements with respect to the light-receiving window can be compensated. This invention also relates to a method of manufacturing the dual pyroelectric element.
摘要:
A non-aqueous battery comprising a positive electrode material capable of being doped with and liberating lithium, a negative electrode material capable of being doped with and liberating lithium, and a polymer electrolyte disposed between the positive and negative electrode materials. The polymer electrolyte is formed by mixing a vinylidene fluoride copolymer and a nonaqueous electrolytic solution with a solvent, followed by evaporation of the solvent, so as to retain a high proportion of the nonaqueous electrolytic solution, leading to high electroconductivity and excellent strength in this state. The vinylidene fluoride copolymer comprises 80 to 97 wt. % of vinylidene fluoride monomer units and 3 to 20 wt. % of units of at least one monomer copolymerizable with vinylidene fluoride monomer, and has an inherent viscosity of 1.7 to 7 dl/g, as measured at 30° C. in a solution at a concentration of 4 g of polymer in 1 liter of N,N-dimethylformamide.
摘要翻译:包括能够掺杂并释放锂的正极材料的非水电池,能够掺杂和释放锂的负极材料,以及设置在正极和负极材料之间的聚合物电解质。 通过将偏二氟乙烯共聚物和非水电解液与溶剂混合,然后蒸发溶剂,以保持高比例的非水电解液形成聚合物电解质,导致高导电性和优异的强度 。 偏二氟乙烯共聚物包含80至97wt。 %偏二氟乙烯单体单元和3至20wt。 至少一种可与偏二氟乙烯单体共聚的单体的单位百分数,并且在30℃下在浓度为4g聚合物1升N的溶液中测定的特性粘度为1.7至7dl / g ,N-二甲基甲酰胺。