Abstract:
A system, method, and computer program product are provided for executing processes involving at least one primitive in a graphics processor, utilizing a data structure. In operation, a data structure is associated with at least one primitive. Additionally, a plurality of processes involving the at least one primitive are executed in a graphics processor, utilizing the data structure. Moreover, the plurality of processes include at least one of selecting at least one surface or portion thereof to which to render, or selecting at least one of a plurality of viewports.
Abstract:
A method, computer readable medium, and system are disclosed for generating multi-view image data. The method includes the steps of processing primitive data of a model to generate processed primitive data that includes multiple position vectors for each vertex in the primitive data, the number of position vectors associated with each vertex being equal to the number of views in at least two views being generated. The method further includes storing the processed primitive data in a buffer. Finally, the processed primitive data may be read from the buffer for each view in the at least two views and transmitted to a raster pipeline to generate image data corresponding to a particular view.
Abstract:
A technique for multiresolution consistent rasterization in which a setup unit calculates universal edge equations for a universal resolution. A rasterizer evaluates coverage data for two different resolutions based on the edge equations. The rasterizer evaluates coverage data for different effective pixel sizes—a large pixel size and a small pixel size. Optionally, the rasterizer may determine a first set of coverage data by performing conservative rasterization to determine coverage data for large pixels. Optionally, the rasterizer may then determine a second set of coverage data by performing standard rasterization for small pixels. Optionally, for the second set of coverage data, the rasterizer may evaluate only the small pixels that are within large pixels in the first set of coverage data that evaluate as covered.
Abstract:
A method, computer readable medium, and system are disclosed for generating multi-view image data. The method includes the steps of processing primitive data of a model to generate processed primitive data that includes multiple position vectors for each vertex in the primitive data, the number of position vectors associated with each vertex being equal to the number of views in at least two views being generated. The method further includes storing the processed primitive data in a buffer. Finally, the processed primitive data may be read from the buffer for each view in the at least two views and transmitted to a raster pipeline to generate image data corresponding to a particular view.
Abstract:
A system, method, and computer program product are provided for adjusting vertex positions. One or more viewport dimensions are received and a snap spacing is determined based on the one or more viewport dimensions. The vertex positions are adjusted to a grid according to the snap spacing. The precision of the vertex adjustment may increase as at least one dimension of the viewport decreases. The precision of the vertex adjustment may decrease as at least one dimension of the viewport increases.
Abstract:
A system, method, and computer program product are provided for mapping tiles to physical memory locations. In use, a plurality of virtual tiles associated with a texture is identified. Additionally, a request to perform a mapping of the plurality of virtual tiles to one or more physical memory locations is received. Further, the plurality of virtual tiles is mapped to the one or more physical memory locations, utilizing a page table.
Abstract:
A system, method, and computer program product are provided for generating primitive-specific attributes. In operation, it is determined whether a portion of a graphics processor is operating in a predetermined mode. If it is determined that the portion of the graphics processor is operating in the predetermined mode, only one or more primitive-specific attributes are generated in association with a primitive.
Abstract:
Methods and apparatuses are disclosed for reporting texture footprint information. A texture footprint identifies the portion of a texture that will be utilized in rendering a pixel in a scene. The disclosed methods and apparatuses advantageously improve system efficiency in decoupled shading systems by first identifying which texels in a given texture map are needed for subsequently rendering a scene. Therefore, the number of texels that are generated and stored may be reduced to include the identified texels. Texels that are not identified need not be rendered and/or stored.
Abstract:
A graphics processing pipeline within a parallel processing unit (PPU) is configured to perform path rendering by generating a collection of graphics primitives that represent each path to be rendered. The graphics processing pipeline determines the coverage of each primitive at a number of stencil sample locations within each different pixel. Then, the graphics processing pipeline reduces the number of stencil samples down to a smaller number of color samples, for each pixel. The graphics processing pipeline is configured to modulate a given color sample associated with a given pixel based on the color values of any graphics primitives that cover the stencil samples from which the color sample was reduced. The final color of the pixel is determined by downsampling the color samples associated with the pixel.
Abstract:
One embodiment of the present invention includes a parallel processing unit (PPU) that performs pixel shading at variable granularities. For effects that vary at a low frequency across a pixel block, a coarse shading unit performs the associated shading operations on a subset of the pixels in the pixel block. By contrast, for effects that vary at a high frequency across the pixel block, fine shading units perform the associated shading operations on each pixel in the pixel block. Because the PPU implements coarse shading units and fine shading units, the PPU may tune the shading rate per-effect based on the frequency of variation across each pixel group. By contrast, conventional PPUs typically compute all effects per-pixel, performing redundant shading operations for low frequency effects. Consequently, to produce similar image quality, the PPU consumes less power and increases the rendering frame rate compared to a conventional PPU.