Abstract:
Various embodiments of the present invention provide a method for cell reselection, comprising: receiving, at a user equipment, system information from a network node that is shared by two or more operator networks, wherein the system information comprises first information associated with at least one operator network related to one or more neighboring cells for the user equipment; determining whether there is an operator network accessible to the user equipment in the at least one operator network, based at least in part on the first information; and performing a cell re-selection procedure only when one or more accessible operator networks are determined.
Abstract:
Various communication systems may benefit from improved random access procedures. For example, it may be helpful to improve random access procedure when changing a coverage enhancement level. A method, according to certain embodiments, may include changing a coverage enhancement level in response to a failure of a random access procedure. The method may also include determining whether early data transmission may be initiated in the changed coverage enhancement level. In addition, the method may include building at a user equipment a protocol data unit corresponding to the changed coverage enhancement level when the early data transmission is initiated in the changed coverage enhancement level. Further, the method may include transmitting the early data from the user equipment to a network entity in the built packet data unit on the changed coverage enhanced level.
Abstract:
In accordance with an example embodiment of the present invention, an apparatus comprising: at least one processor; and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to perform at least the following: detect that a mode change is required; and in response to the detection that a mode change is required, select a mode for resource allocation, wherein the mode is selected based on a command received by the apparatus or the mode is selected from a plurality of modes which comprises a first mode and a second mode, and wherein in the first mode the cellular communication and device to device communication are separated in time, and in the second mode the cellular communication and device to device communication take place simultaneously.
Abstract:
Embodiments of the present disclosure relate to methods, devices and computer readable storage medium for transport block size (TBS) configuration. In example embodiments, a terminal device transmits a random access preamble to a network device. The terminal device receives a random access response from the network device. The random access response includes a resource allocated for a reference TBS. Based on the reference TBS, the terminal device determines a TBS for transmitting data to the network device. Then, the terminal device transmits the data to the network device by using the determined TBS and the allocated resource. This TBS configuration is more flexible.
Abstract:
There is provided an apparatus, said apparatus comprising means for receiving, at a user equipment, a scheduling grant for a first number, M, of transport blocks, wherein the scheduling grant comprises an indication of a second number, N, of transport blocks to be transmitted or received before a time delay, wherein M is greater than 1 and N is less than or equal to M, causing transmission or reception of a first group of N transport blocks and, if N is less than M, after the time delay, causing transmission or reception of a further group of up to N transport blocks followed by the time delay, until M transport blocks are caused to be transmitted or received.
Abstract:
A method includes monitoring for a radio link failure associated with a secondary cell of a secondary base station. This may be a PScell. A user device may select a second secondary cell as a target secondary cell. The user device initiates a relocation procedure with the target secondary cell.
Abstract:
Systems, methods, apparatuses, and computer program products relating to the coexistence of a first mode and second mode of vehicle-to-vehicle (V2V) communications. One method includes allocating, to a user equipment (UE) operating in a first mode of V2V communication that is also configured to use resources from a shared transmit (Tx) pool of a second mode of V2V communication, a pair of resources. The first of the pair of resources may be allocated from an exclusive Tx pool for the first mode, and the second of the pair of resources may be allocated from the shared Tx pool of the second mode of V2V communication.
Abstract:
Systems, methods, apparatuses, and computer program products for narrow band internet of things (NB-IoT) paging optimization are provided. One method includes, when extended discontinuous reception (eDRX) is not configured for a user equipment (UE), applying a maximum repetition number of each coverage enhancement (CE) mode for paging transmission and associating a different repetition number with each paging occasion (PO). When extended discontinuous reception (eDRX) is configured for the user equipment, the method includes associating each paging occasion (PO) with a different repetition number.
Abstract:
A method including transmitting signals from a first base station to a second base station in a network; and during an interface setup or an interface update between the first base station and the second base station, receiving by the first base station information regarding at least one of: whether coverage enhancement (CE) is supported by the second base station, a maximum coverage enhancement (CE) level supported by the second base station, whether low-cost coverage enhancement (CE) is supported by the second base station, and coverage enhancement (CE) level criteria at the second base station.
Abstract:
A method, corresponding apparatuses, and a computer program product for enhancing small cell mobility are provided. The method comprises measuring a first channel quality level in a primary serving cell over a primary component carrier. The method also comprises measuring a second channel quality level in a secondary serving cell over a secondary component carrier. The method further comprises performing neighbor cell measurement on a list of frequency carriers if the first channel quality level is higher than a first threshold value and the second channel quality level is lower than a second threshold value. With the claimed inventions, small cell layer's neighbor cell measurement would be also triggered by SCell's quality degradation, which may result in less UE power consumption. Further, measurement gap is used more economically and causes less impact on UE's data rate and throughput.