Abstract:
A pressure-sensitive adhesive of the present invention comprises a (meth)acryl-based polymer obtained by polymerization of a monomer component containing 40 to 99.5% by weight of an alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at an ester end and more than 0 to 50% by weight or less of an alicyclic structure-containing monomer. The pressure-sensitive adhesive is capable of forming a pressure-sensitive adhesive layer that has a sufficiently low level of dielectric constant and a satisfactory level of adhesion performance.
Abstract:
Provided is a pressure-sensitive adhesive layer for a transparent conductive film having a patterned transparent conductive thin film, which has transparent as the pressure-sensitive adhesive layer for transparent conductive film and can prevent the patterned transparent conductive thin film from degrading the appearance of the conductive film. A pressure-sensitive adhesive layer for a transparent conductive film having a patterned transparent conductive thin film, wherein the pressure-sensitive adhesive layer is made from an acrylic pressure-sensitive adhesive composition containing: 100 parts by weight of an acryl-based polymer obtained by polymerization of a monomer component including an alkyl(meth)acrylate; and 30 to 150 parts by weight of a styrene-based oligomer, the pressure-sensitive adhesive layer has a refractive index of 1.50 or more, the pressure-sensitive adhesive layer has a haze of 2% or less as measured at a thickness of 30 μm.
Abstract:
The invention relates to a functionalized laminated optical element comprising: —An optical base element; —A functional film structure consisting of a single layer or a multilayer structure; —A layer of a pressure-sensitive adhesive of optical quality, placed between one surface of the optical base element and the functional film structure so as to permanently retain said functional film structure on the surface of the optical base element. Said functionalized laminated optical element maintains its integrity after typical processing of an optical article which includes wheel edging. More particularly the invention relates to the use of a specific adhesive system for improving the wheel edging resistance of functionalized laminated optical element. The functional laminated optical may be an ophthalmic lens.
Abstract:
Provided is a pressure-sensitive adhesive capable of realizing a pressure-sensitive adhesive layer having satisfactory adhesion performance and a high ink step absorbability. A radiation-curable pressure-sensitive adhesive, which contains a (meth)acryl-based polymer obtained by polymerizing a monomer component containing 30 to 90% by weight of an alkyl(meth)acrylate having an alkyl group of 10 to 22 carbon atoms at an ester end, and having a radically polymerizable functional group containing a carbon-carbon double bond.
Abstract:
An object of the present invention is to provide a radiation-curable pressure-sensitive adhesive layer that satisfies both reworkability and adhesion reliance. Further, another object of the present invention is to provide a pressure-sensitive adhesive sheet containing the radiation-curable pressure-sensitive adhesive layer. The invention relates to a radiation-curable pressure-sensitive adhesive layer, which has an adhesive strength of 1.0 N/20 mm or less before radiation curing and an adhesive strength of 3.0 N/20 mm or more after radiation curing, and a peeling adhesive strength of 40.0 N/(20 mm×20 mm) or less before radiation curing, to an acrylic plate.