Abstract:
A cross stream thrombectomy catheter with a flexible and expandable cage preferably formed of nitinol for removal of hardened and aged thrombotic material stubbornly attached to the interior of a blood vessel. The cage, which can be mesh or of straight or spiral filament design, is located close to inflow and outflow orifices at the distal portion of a catheter tube and is deployed and extended at a thrombus site for intimate contact therewith and for action of a positionable assembly and subsequent rotation and lineal actuation to abrade, grate, scrape, or otherwise loosen and dislodge difficult to remove thrombus which can interact with cross stream flows to exhaust free and loosened thrombotic particulate through the catheter tube. An alternative embodiment discloses a mechanism involving a threaded tube in rotatable engagement with an internally threaded sleeve to incrementally control the deployment and expansion of the flexible and expandable cages.
Abstract:
A temporary inferior vena cava filter including a guidewire and a doublet cage filter distally located on the guidewire. The doublet cage filter has a proximal cage filter and a distal cage filter, both of resilient and biased toward their expanded or deployed state. The proximal and distal cage filters may be collapsed by actuation, preferably with a sheath. A method of protecting from pulmonary embolism during treatment of a deep vein thrombosis is disclosed. The doublet cage provides stability when deployed in the inferior vena cava, is readily retrieved and readily manufactured. A method of manufacturing the doublet cage filter assembly is also disclosed and involves a nitinol tube with plural cuts to form struts which are heat treated in an expanded state.
Abstract:
A direct stream hydrodynamic catheter system is provided for the removal of thrombus, lesions and the like including provisions for the infusion of drugs, lysing fluids and the like into a blood vessel. Physician controlled high powered direct fluid jet streams emanate from a fluid jet emanator in the form of robust radially directed fluid jet streams to impinge upon and ablate difficult and strong thrombus or lesions within a blood vessel. Effluent aspiration is controlled by an exhaust regulator in the form of a roller pump, but effluent removal can be assistingly influenced by the fluid pressure associated with the radially directed fluid jet streams.
Abstract:
Fluid infusion systems and fluid couplings are described herein. The infusion systems may include one or more fluid couplings used to make fluidic connection between a supply line and delivery tubing. The fluid couplings separate the functions of providing a seal around a delivery tube and retaining the delivery tube within the fluid coupling. The seal provided around the delivery tube prevents leakage around an exterior surface of a delivery tube such that fluid passing through the coupling must pass through the delivery tube rather than leak around the delivery tube. The structure used to retain the delivery tube in the fluid coupling prevents ejection of the delivery tube from the coupling due to the fluid pressures present in the coupling. The separate functions are performed by different structures within the fluid couplings.
Abstract:
A balloon catheter (10) having a shaft (16), a balloon (14), and an external delivery tube (12) is disclosed. Methods of using the balloon catheter having an external delivery tube are also disclosed. In one example, the balloon catheter is an agent delivery catheter including a catheter body extending between catheter proximal and distal portions. An inflatable balloon assembly (100) is coupled with the catheter body. An agent delivery assembly (102) is coupled with the catheter body and the inflatable balloon assembly. The agent delivery assembly includes a delivery lumen (32) extending through the catheter body, and an agent delivery tube extending along an exterior balloon surface (64). The agent delivery tube includes at least one delivery orifice (70) directed outside of the exterior balloon surface. The agent delivery assembly is isolated from fluid communication with the inflatable balloon assembly.
Abstract:
A thrombectomy catheter with a self-inflating proximal balloon having drug infusion capabilities is described. A self-inflating balloon is formed from an inflatable thin walled section of a flexible catheter tube. The self-inflating balloon includes a plurality of outflow orifices located about the peripheral circumference thereof and located proximal to an inflow gap interposed between a fluid jet emanator and the self-inflating balloon. The self-inflating balloon is inflated and expanded by internal operating pressures by proximal composite flow of fluid from the fluid jet emanator and entrained fluid from the inflow gap to uniformly space and position the outflow orifices of the self-inflating balloon in close proximity to the thrombus or vessel walls of a blood vessel. The thrombectomy catheter may be used for, among other things, thrombectomies, embolectomies, thrombus or vessel dilation, and for the delivery of drugs to a thrombus or vessel site.
Abstract:
The general purpose of the present invention is to provide a catheter for removal of an organized embolic thrombus, preferably in conjunction with a distal occlusion balloon guidewire. The present invention consists of three main components including a capture/delivery sheath, a capture sleeve of mesh attached to a tube and a grasping mechanism attached to another tube which is central to the other components. Operative structures in the form of manifolds are connected to such components in order to manipulate and control the relative positions of the capture/delivery sheath, the capture sleeve and the grasping mechanism. An embolic thrombus is engaged by the deployable automatically expanding serrated fingers of a grasping mechanism in combination with a deployable automatically expanding mesh capture sleeve. The capture/delivery sheath is maneuvered to cause compression of the serrated fingers and of the mesh capture sleeve for subsequent removal of the embolic thrombus.
Abstract:
The present invention is for an arterial closure device which can be used to implement and augment the closure of a femoral artery or other related, adjacent or similar members of the vasculature and to reduce compression times associated therewith. A resorbable tubular plug is introduced through a delivery sheath subsequent to a procedure in which the delivery sheath is first utilized. The resorbable tubular plug is inserted through the delivery sheath and the distal tip of the resorbable tubular plug is positioned a short distance into the artery, whereby a suitable entry can be indicated by blood flow through and from the resorbable tubular plug. The delivery sheath is withdrawn to expose the resorbable tubular plug to the tissue track and to the arteriotomy and manual compression is applied to the wound site to foster and promote hemostasis.
Abstract:
A forwardly directed fluid jet crossing catheter having a distally directed cylindrical flow fluid jet stream to cross a chronic total occlusion is set forth. The distal end of the device includes a formable catheter tip region having flexible internal components. Low and high pressure cavities are formed substantially by joined proximal and distal catheter tubes having an adhesive plug seal in common therebetween which partially defines one end of each of the low pressure and high pressure cavities. A guidewire tube and a high pressure tube are aligned along and within the low pressure and high pressure cavities and through the adhesive plug seal. The high pressure tube openly terminates in the high pressure cavity, whereby pressurized fluid transfers from the high pressure cavity in the guidewire tube entry hole to subsequently pass along the guidewire lumen and co-located guidewire to exit as a cylindrical fluid jet stream.
Abstract:
A catheter includes a pressure actuated seal within a manifold. A catheter body is coupled with the manifold, and a manifold lumen and a catheter lumen are configured to receive pressurized fluids. The pressure actuated seal includes a pressure actuated seal element having a seal element lumen. The seal element lumen is in communication with the manifold and catheter lumens. The pressure actuated seal element is deformable between an open configuration and a sealed configuration. In the sealed configuration, the pressurized fluids in the manifold press on the pressure actuated seal element along a first seal face. The pressure actuated seal element compresses inwardly around the seal element lumen according to a pressure of the pressurized fluids. In the open configuration, the pressure actuated seal element relaxes in an absence of the pressurized fluids, and the seal element lumen is open and configured to allow passage of an instrument.