Abstract:
A hybrid antenna (and related method for manufacturing the antenna) includes a dielectric substrate and a stamping element. The stamping element includes a main radiator, a first holder, a second holder, a feeding element, an extension branch, a first trace, and a first via. The main radiator is substantially disposed above the dielectric substrate. The first holder is coupled to a first end of the main radiator. The second holder is coupled to a second end of the main radiator. The feeding element is coupled to a signal source. The extension branch is substantially disposed below the dielectric substrate, and is coupled between the second holder and the feeding element. The first trace is disposed on a second surface of the dielectric substrate, and the first via is formed through the dielectric substrate, and coupled between an end of the first trace and the first holder.
Abstract:
The invention provides a portable electronic system. The portable electronic system includes a semiconductor package. The semiconductor package includes a substrate. A semiconductor die is coupled to the substrate. A thermoelectric device chip is disposed close to the semiconductor die, coupled to the substrate. The thermoelectric device chip is configured to detect a heat energy generated from the semiconductor die and to convert the heat energy into a recycled electrical energy. A power system is coupled to the semiconductor package, configured to store the recycled electrical energy.
Abstract:
A hybrid antenna includes a dielectric substrate and a stamping element. The stamping element includes a main radiator, a first holder, a second holder, a feeding element, and an extension branch. The main radiator is substantially disposed above the dielectric substrate. The first holder is coupled to a first end of the main radiator. The second holder is coupled to a second end of the main radiator. The feeding element is coupled to a signal source. The extension branch is substantially disposed below the dielectric substrate, and is coupled between the second holder and the feeding element.