Abstract:
An oscillator having a tank circuit, an amplifier circuit and a switching circuit. The switching circuit switches the oscillator between a normal power consumption mode and a lower power consumption mode. The amplifier circuit includes an emitter biased transistor. The switching circuit switches between power consumption modes by switching between two selected voltages at the base of the transistor. When in the lower power consumption mode, the oscillator has sufficient current to sustain oscillation but insufficient current to meet the phase noise requirements for good fidelity and high data rates. When in the normal power consumption mode, the oscillator has sufficient current to meet the phase noise requirements for good
Abstract:
An electronic oscillator of the Colpitts type with an amplifying element and a tank circuit. The tank circuit includes a parallel tuned resonant circuit, a series tuned resonant circuit and a switching circuit that selectively connects one of the resonant circuits to the tank circuit. The oscillator operates at a first frequency in the parallel tuned mode and a second frequency that is substantially twice the first frequency in the series tuned mode.
Abstract:
A communication system includes a front-end multi-throw switch, a back-end multi-throw switch, multiple filters and a switch controller. The front-end multi-throw switch includes front-end throws and a front-end pole. The front-end pole is coupled to a receive channel or a transmit channel. The front-end pole is switchably coupled to one of the front-end throws. The back-end multi-throw switch includes back-end throws and a back-end pole. Each of the back-end throws is associated with a corresponding one of the front-end throws. The back-end pole is coupled to the receive channel or the transmit channel. The back-end pole is switchably coupled to one of the back-end throws. The one of the back-end throws corresponds to the one of the front-end throws. The filters are interposed between the front-end multi-throw switch and the back-end multi-throw switch. Each of the filters has a first port coupled to one of the front-end throws and a second port coupled to one of the back-end throws. A first one of the filters includes a filter of a first bandwidth. A second one of the filters includes a filter of a second bandwidth. The first bandwidth is different from the second bandwidth. The switch controller is coupled to the front-end multi-throw switch and the back-end multi-throw switch. The switch controller is configured to synchronously switch the front-end pole to one of the front-end throws and the back-end pole to a corresponding one of the back-end throws.
Abstract:
An oscillator having two oscillation circuits with widely different frequencies with a common passive switched output circuit. Each oscillator circuit includes a transmission line inductive impedance between the oscillator output and ground. The inductive impedances are selected to be open at the operating frequency of the associated oscillator circuit and a short or a low impedance at the frequency of the other oscillator circuit. Each inductive impedance forms a portion of an impedance matching pad for the other oscillator circuit.