Abstract:
A bin monitoring system functions both as a device for lifting the bin and as a weighing system for monitoring or measuring the level of feed in a feed bin. Various embodiments having a suspended load cell and methods of retrofitting the bin monitoring system to existing bins are provided. Further, the accuracy provided by various embodiments enables one to accurately predict when the feed bin will be empty. Thus, the feed mill can be aware of anticipated needs days in advance, allowing the feed mill to better optimize its scheduling and deliveries.
Abstract:
A bin monitoring system functions both as a device for lifting the bin and as a weighing system for monitoring or measuring the level of feed in a feed bin. Various embodiments having a suspended load cell and methods of retrofitting the bin monitoring system to existing bins are provided. Further, the accuracy provided by various embodiments enables one to accurately predict when the feed bin will be empty. Thus, the feed mill can be aware of anticipated needs days in advance, allowing the feed mill to better optimize its scheduling and deliveries.
Abstract:
The present invention relates to a control system for establishing and maintaining a desired uniform temperature in a room heated by a heating device. The control system includes a valve assembly for controlling the pressure of the fluid supplied to the heating device, the valve assembly including a valve actuator, a pressure sensor sensing the pressure of the fluid supplied to the heater, and a temperature control device to sense the ambient temperature of the room. The control system also includes an electronic control unit connected to the aforementioned elements, the electronic control unit including an electronic circuit which samples “open” and “close” input signals from the temperature control device, determines the rate of change of the pressure of the fluid from a predetermined pressure set point, and varies the pressure set point (which thereby varies the heating device output), according to the “open” or “close” signals by providing a command signal to the valve actuator. This command signal is based upon a difference between the predetermined desired temperature and the actual temperature, and the rate of change of the pressure of the fluid.
Abstract:
A system for weighing a plurality of quadruped animals is for use in a pen confining the animals. The pen has at least first and second segregated spaces with a first one-way chute allowing animal passage from the second space to the first space. A weighing station is located within a passage having an entrance and an exit, and that allows animal passage from the first area to the second area. The weighing station includes a weighing platform within the passage over which an animal must pass when passing from the first to the second space. The weighing platform has inlet and exit scales that support the weighing platform adjacent to inlet and exit ends thereof, and provides inlet and exit weight signals. A controller receives the inlet and exit weight signals and uses them in an iterative process to determine the presence of a single animal on the weighing platform. Once that determination is made, the sum of the inlet and exit weight values is very likely to accurately provide the animal weight. The controller may also use the inlet and exit weight signals to control closing of an inlet gate to bar more than one animal at a time from the weighing platform. An animal sorting system can easily incorporate this weighing system to provide more accurate sorting.
Abstract:
A system for weighing a plurality of quadruped animals is for use in a pen confining the animals. The pen has at least first and second segregated spaces with a first one-way chute allowing animal passage from the second space to the first space. A weighing station is located within a passage having an entrance and an exit, and that allows animal passage from the first area to the second area. The weighing station includes a weighing platform within the passage over which an animal must pass when passing from the first to the second space. The weighing platform has inlet and exit scales that support the weighing platform adjacent to inlet and exit ends thereof, and provides inlet and exit weight signals. A controller receives the inlet and exit weight signals and uses them in an iterative process to determine the presence of a single animal on the weighing platform. Once that determination is made, the sum of the inlet and exit weight values is very likely to accurately provide the animal weight. The controller may also use the inlet and exit weight signals to control closing of an inlet gate to bar more than one animal at a time from the weighing platform. An animal sorting system can easily incorporate this weighing system to provide more accurate sorting.
Abstract:
A bin monitoring system functions both as a device for lifting the bin and as a weighing system for monitoring or measuring the level of feed or other product in a bin. Various embodiments and methods of retrofitting the bin monitoring system to existing bins are provided. Further, the accuracy provided by various embodiments enables one to accurately predict when the bin will be empty. Thus, a feed mill, for example, can be aware of anticipated needs days in advance, allowing the feed mill to better optimize its scheduling and deliveries.
Abstract:
A bin monitoring system functions both as a device for lifting the bin and as a weighing system for monitoring or measuring the level of feed or other product in a bin. Various embodiments and methods of retrofitting the bin monitoring system to existing bins are provided. Further, the accuracy provided by various embodiments enables one to accurately predict when the bin will be empty. Thus, a feed mill, for example, can be aware of anticipated needs days in advance, allowing the feed mill to better optimize its scheduling and deliveries.
Abstract:
A bin monitoring system functions both as a device for lifting the bin and as a weighing system for monitoring or measuring the level of feed in a feed bin. Various embodiments having a suspended load cell and methods of retrofitting the bin monitoring system to existing bins are provided. Further, the accuracy provided by various embodiments enables one to accurately predict when the feed bin will be empty. Thus, the feed mill can be aware of anticipated needs days in advance, allowing the feed mill to better optimize its scheduling and deliveries.
Abstract:
A power control system for automatically and proportionately metering power to a heating device used to create a warm microenvironment conducive to the health and growth of an animal during a predetermined incubation period is herein disclosed. The power control system transmits proportionally more power to a heating device where an ambient room temperature measured outside of the microenvironment is nearer a predetermined lower limit, and proportionately less power when the ambient room temperature measured outside of the microenvironment is nearer a predetermined upper limit. A method of providing a heated microenvironment within a larger environment also is disclosed.
Abstract:
A bin monitoring system functions both as a device for lifting the bin and as a weighing system for monitoring or measuring the level of feed in a feed bin. Various embodiments having a suspended load cell and methods of retrofitting the bin monitoring system to existing bins are provided. Further, the accuracy provided by various embodiments enables one to accurately predict when the feed bin will be empty. Thus, the feed mill can be aware of anticipated needs days in advance, allowing the feed mill to better optimize its scheduling and deliveries.