摘要:
The apparatus for producing sheeting includes a transport unit which transports a web of sheeting along its length direction, a pattern transfer unit which forms a pattern on a surface of the sheeting by transfer and that is provided in a pathway where the web of sheeting is transported by the transport unit, a film depositing unit which performs vacuum film deposition on the patterned surface of the web of sheeting and that is provided downstream of the pattern transfer unit in the pathway, and a pressure retaining unit which retains pressure within the film depositing unit and that is provided in a region of the film depositing unit into which the web of sheeting is transported and in a region of the film depositing unit from which the web of sheeting emerges.
摘要:
The carbon layer forming method starts a film deposition process of a carbon layer by vapor phase deposition after a content of particles having a particle size of 0.5 &mgr;m or more is adjusted in a film deposition system of the carbon layer to 1000 particles/ft3/min or less. The carbon layer forming method by means of a vapor phase deposition technique such as sputtering or CVD ensures that a high-quality carbon layer having significantly reduced pinholes or cracks can be obtained. Since the carbon protective layer obtained by this method has no cracking and delamination due to pinholes and cracks, the thermal head having the carbon protective layer has a sufficient durability to ensure that high reliability is exhibited over an extended period of time to perform thermal recording of high-quality images consistently over an extended period of operation.
摘要翻译:碳层形成方法在碳层的成膜体系中调整粒径为0.5μm以上的粒子的含量为1000个/ ft 3以上后,通过气相沉积开始碳层的成膜处理 > / min以内。 通过诸如溅射或CVD的气相沉积技术的碳层形成方法确保可以获得具有显着减小的针孔或裂纹的高质量碳层。 由于通过该方法获得的碳保护层由于针孔和裂纹而没有破裂和分层,所以具有碳保护层的热敏头具有足够的耐久性,以确保在延长的时间段内显示高可靠性以进行热记录 高质量的图像在长时间的运行中始终如一。
摘要:
The method of forming a carbon layer by vapor phase deposition starts a film deposition process of the carbon layer after a surface to be coated with the carbon layer is heated while adjusting a partial pressure of moisture in a film deposition system of the carbon layer to 5×10−6 Torr or less. This carbon layer forming method by means of a vapor phase deposition technique such as sputtering ensures that a high-quality carbon layer having high adhesion to the lower layer and significantly reduced pinholes or cracks is obtained.
摘要:
A gas barrier film includes a substrate film and a gas barrier layer formed on the substrate film. The gas barrier layer is an inorganic compound layer that is made of an inorganic compound having a grain size of 3 nm to 20 nm and has grain boundaries at intervals of 1 nm to 20 nm. A stimulable phosphor panel includes a substrate, a stimulable phosphor layer formed on the substrate and the gas barrier film with which the stimulable phosphor layer is covered and sealed. A gas barrier film producing method prepares the substrate film and performs impedance controlled reactive sputtering on the substrate film at a film deposition pressure of 0.01 Pa to 0.13 Pa to form the gas barrier layer on the substrate film to thereby produce the gas barrier film.
摘要:
The process and apparatus introduce a carrier gas into a vacuum evaporation chamber, evaporate a film forming material from a evaporation source and deposit the evaporated film forming material on a substrate in sheet form to form a stimulable phosphor layer, thereby producing a evaporated phosphor sheet having a stimulable phosphor layer formed on the substrate. The stimulable phosphor layer is formed with substantially all areas of the evaporation source except opening for evaporation being masked to block movement of heat toward the substrate. The evaporated phosphor sheet includes the substrate and a CsBr:Eu evaporated stimulable phosphor layer deposited on the substrate. A maximum intensity of instantaneous light emission from the stimulable phosphor layer at 640 nm upon excitation by uv radiation is lower than a maximum intensity of the instantaneous light emission at 440 nm.
摘要:
A thermal head fabricating method forms a lower protective layer made of ceramics for protecting a plurality of heat-generating resistors and electrodes, subjects the lower protective layer to etching processing by a plasma and forms a carbon protective layer on the thus subjected lower protective layer. The etching processing is performed using a mask which defines an area where the carbon protective layer is formed, a protective layer is formed on a surface of the mask, and the protective layer is made of a material which is etched at an extremely slow rate or substantially not etched compared with ceramics composing the lower protective layer and/or which does not impart an adverse effect to the carbon protective layer that is subsequently formed.
摘要:
The thermal head fabrication method provides a thermal head having a lower protective layer composed of at least one sub-layer on heat generators and electrodes, an intermediate protective layer composed of at least one sub-layer on the lower protective layer and an upper protective layer composed of at least one sub-layer with carbon as a main component on the intermediate protective layer. At least one of surfaces of the lower and intermediate protective layers is cleaned by ion irradiation processing, by polishing with a lapping tape or an adhesive tape, or by heating processing in vacuum before forming a higher protective layer. This allows the thermal head to have excellent adhesion between any individual layers and sufficient durability to ensure that the thermal recording of high-quality images is consistently performed over an extended period of time.
摘要:
A thermal head lapping apparatus includes a pallet for holding at least one thermal head, a transport device for transporting the thermal head held on the pallet successively to a specified processing position, and a lapping device for forcing a lapping material being moved onto the thermal head that has been transported to said processing position. As a result, the apparatus is capable of advantageously performing lapping treatment with a good efficiency on surfaces to be coated with protective layers or the formed protective layers in a process of fabricating a thermal head, thereby improving the production efficiency of the thermal head and fabricating with a good productivity the suitably lapped thermal head of high quality that ensures high quality image recording.
摘要:
A magnetic recording medium 101 constituted by a nonmagnetic support 101 made from a high polymer film having a thickness in a range of from 10 .mu.m to 200 .mu.m, a nonmagnetic subbing layer 102 made from a Cr alloy and formed on at least one of opposite surfaces of the nonmagnetic support 101 in the form of a film by sputtering, and a magnetic layer 103 made from a Co alloy and formed on the nonmagnetic subbing layer 102 in the form of a film by sputtering. Preferably, the magnetic recording medium 101 further has a protective layer 104 made from diamond-like carbon, and a lubricating layer 105 made from a hydrocarbon or fluorocarbon lubricant.
摘要:
The process and apparatus introduce a carrier gas into a vacuum evaporation chamber, evaporate a film forming material from a evaporation source and deposit the evaporated film forming material on a substrate in sheet form to form a stimulable phosphor layer, thereby producing a evaporated phosphor sheet having a stimulable phosphor layer formed on the substrate. The stimulable phosphor layer is formed with substantially all areas of the evaporation source except opening for evaporation being masked to block movement of heat toward the substrate. The evaporated phosphor sheet includes the substrate and a CsBr:Eu evaporated stimulable phosphor layer deposited on the substrate. A maximum intensity of instantaneous light emission from the stimulable phosphor layer at 640 nm upon excitation by uv radiation is lower than a maximum intensity of the instantaneous light emission at 440 nm.