-
公开(公告)号:US12222537B2
公开(公告)日:2025-02-11
申请号:US18729437
申请日:2023-01-20
Applicant: Magic Leap, Inc.
Inventor: Matthew C Traub , Yingnan Liu , Vikramjit Singh , Frank Y. Xu , Robert D. Tekolste , Qizhen Xue , Samarth Bhargava , Victor Kai Liu , Brandon Michael-James Born , Kevin Messer
Abstract: The disclosure describes an improved drop-on-demand, controlled volume technique for dispensing resist onto a substrate, which is then imprinted to create a patterned optical device suitable for use in optical applications such as augmented reality and/or mixed reality systems. The technique enables the dispensation of drops of resist at precise locations on the substrate, with precisely controlled drop volume corresponding to an imprint template having different zones associated with different total resist volumes. Controlled drop size and placement also provides for substantially less variation in residual layer thickness across the surface of the substrate after imprinting, compared to previously available techniques. The technique employs resist having a refractive index closer to that of the substrate index, reducing optical artifacts in the device. To ensure reliable dispensing of the higher index and higher viscosity resist in smaller drop sizes, the dispensing system can continuously circulate the resist.
-
公开(公告)号:US20250044573A1
公开(公告)日:2025-02-06
申请号:US18717946
申请日:2022-12-16
Applicant: Magic Leap, Inc.
Inventor: Vikramjit Singh , Matthew C. Traub , Frank Y. Xu
Abstract: An eyepiece includes an optical waveguide, a transmissive input coupler at a first end of the optical waveguide, an output coupler at a second end of the optical waveguide, and a polymeric color absorbing region along a portion of the optical waveguide between the transmissive input coupler and the output coupler. The transmissive input coupler is configured to couple incident visible light to the optical waveguide, and the color-absorbing region is configured to absorb a component of the visible light as the visible light propagates through the optical waveguide.
-
公开(公告)号:US12181679B2
公开(公告)日:2024-12-31
申请号:US18319745
申请日:2023-05-18
Applicant: Magic Leap, Inc.
Inventor: Jeffrey Dean Schmulen , Neal Paul Ricks , Samarth Bhargava , Kevin Messer , Victor Kai Liu , Matthew Grant Dixon , Xiaopei Deng , Marlon Edward Menezes , Shuqiang Yang , Vikramjit Singh , Kang Luo , Frank Y. Xu
Abstract: Display devices include waveguides with in-coupling optical elements that mitigate re-bounce of in-coupled light to improve overall in-coupling efficiency and/or uniformity. A waveguide receives light from a light source and/or projection optics and includes an in-coupling optical element that in-couples the received light to propagate by total internal reflection in a propagation direction within the waveguide. Once in-coupled into the waveguide the light may undergo re-bounce, in which the light reflects off a waveguide surface and, after the reflection, strikes the in-coupling optical element. Upon striking the in-coupling optical element, the light may be partially absorbed and/or out-coupled by the optical element, thereby effectively reducing the amount of in-coupled light propagating through the waveguide. The in-coupling optical element can be truncated or have reduced diffraction efficiency along the propagation direction to reduce the occurrence of light loss due to re-bounce of in-coupled light, resulting in less in-coupled light being prematurely out-coupled and/or absorbed during subsequent interactions with the in-coupling optical element.
-
公开(公告)号:US20240375343A1
公开(公告)日:2024-11-14
申请号:US18783962
申请日:2024-07-25
Applicant: Magic Leap, Inc.
Inventor: Roy Patterson , Charles Scott Carden , Satish Sadam , Ryan Christiansen , Matthew S. Shafran , Christopher John Fleckenstein , Vikramjit Singh , Michael Nevin Miller , Kang LUO
IPC: B29C59/04 , B29C43/22 , B29C43/28 , B29C43/30 , B29C43/34 , B29C43/48 , B29C43/50 , B29C43/52 , B29C43/58 , B29C51/26 , G03F7/00
Abstract: Systems, apparatus, and methods for double-sided imprinting are provided. An example system includes first rollers for moving a first web including a first template having a first imprinting feature, second rollers for moving a second web including a second template having a second imprinting feature, dispensers for dispensing resist, a locating system for locating reference marks on the first and second webs for aligning the first and second templates, a light source for curing the resist, such that a cured first resist has a first imprinted feature corresponding to the first imprinting feature on one side of the substrate and a cured second resist has a second imprinted feature corresponding to the second imprinting feature on the other side of the substrate, and a moving system for feeding in the substrate between the first and second templates and unloading the double-imprinted substrate from the first and second webs.
-
公开(公告)号:US20220365262A1
公开(公告)日:2022-11-17
申请号:US17868485
申请日:2022-07-19
Applicant: Magic Leap, Inc.
Inventor: Shuqiang Yang , Kang Luo , Vikramjit Singh , Frank Y. Xu
Abstract: A method of fabricating a blazed diffraction grating comprises providing a master template substrate and imprinting periodically repeating lines on the master template substrate in a plurality of master template regions. The periodically repeating lines in different ones of the master template regions extend in different directions. The method additionally comprises using at least one of the master template regions as a master template to imprint at least one blazed diffraction grating pattern on a grating substrate.
-
公开(公告)号:US20210191041A1
公开(公告)日:2021-06-24
申请号:US17126574
申请日:2020-12-18
Applicant: Magic Leap, Inc.
Inventor: Arturo Manuel Martinez, JR. , Vikramjit Singh , Michal Beau Dennison Vaughn , Joseph Christopher Sawicki
Abstract: Methods for singulating an optical waveguide material at a contour include directing a first laser beam onto a first side of the optical waveguide material to generate a first group of perforations in the optical waveguide material. A second laser beam is directed onto a second side of the optical waveguide material to generate a second group of perforations in the optical waveguide material. The second side is opposite the first side. The first group of perforations and the second group of perforations define a perforation zone at the contour. A third laser beam is directed at the perforation zone to singulate the optical waveguide material at the perforation zone.
-
公开(公告)号:US20210191025A1
公开(公告)日:2021-06-24
申请号:US17194878
申请日:2021-03-08
Applicant: Magic Leap, Inc.
Inventor: Shuqiang Yang , Vikramjit Singh , Kang Luo , Nai-Wen Pi , Frank Y. Xu
Abstract: Embodiments of the present disclosure are directed to techniques for manufacturing an eyepiece (or eyepiece layer) by applying multiple, different diffraction gratings to a single side of an eyepiece substrate instead of applying different gratings to different sides (e.g., opposite surfaces) of the substrate. Embodiments are also directed to the eyepiece (or eyepiece layer) that is arranged to have multiple, different diffraction gratings on a single side of the eyepiece substrate. In some embodiments, two or more grating patterns are superimposed to create a combination pattern in a template (e.g., a master), which is then used to apply the combination pattern to a single side of the eyepiece substrate. In some embodiments, multiple layers of patterned material (e.g., with differing refraction indices) are applied to a single side of the substrate. In some examples, the combined grating patterns are orthogonal pupil expander and exit pupil expander grating patterns.
-
公开(公告)号:US10670971B2
公开(公告)日:2020-06-02
申请号:US16165027
申请日:2018-10-19
Applicant: Magic Leap, Inc.
Inventor: Vikramjit Singh , Michael Nevin Miller , Frank Y. Xu , Shuqiang Yang
Abstract: An imprint lithography method of configuring an optical layer includes selecting one or more parameters of a nanolayer to be applied to a substrate for changing an effective refractive index of the substrate and imprinting the nanolayer on the substrate to change the effective refractive index of the substrate such that a relative amount of light transmittable through the substrate is changed by a selected amount.
-
公开(公告)号:US20200158942A1
公开(公告)日:2020-05-21
申请号:US16685505
申请日:2019-11-15
Applicant: Magic Leap, Inc.
Inventor: Shuqiang Yang , Vikramjit Singh , Kang Luo , Nai-Wen Pi , Frank Y. Xu, JR.
Abstract: Embodiments of the present disclosure are directed to techniques for manufacturing an eyepiece (or eyepiece layer) by applying multiple, different diffraction gratings to a single side of an eyepiece substrate instead of applying different gratings to different sides (e.g., opposite surfaces) of the substrate. Embodiments are also directed to the eyepiece (or eyepiece layer) that is arranged to have multiple, different diffraction gratings on a single side of the eyepiece substrate. In some embodiments, two or more grating patterns are superimposed to create a combination pattern in a template (e.g., a master), which is then used to apply the combination pattern to a single side of the eyepiece substrate. In some embodiments, multiple layers of patterned material (e.g., with differing refraction indices) are applied to a single side of the substrate. In some examples, the combined grating patterns are orthogonal pupil expander and exit pupil expander grating patterns.
-
公开(公告)号:US10442727B2
公开(公告)日:2019-10-15
申请号:US15862078
申请日:2018-01-04
Applicant: Magic Leap, Inc.
Inventor: Mauro Melli , Christophe Peroz , Vikramjit Singh
Abstract: Plasma etching processes for forming patterns in high refractive index glass substrates, such as for use as waveguides, are provided herein. The substrates may be formed of glass having a refractive index of greater than or equal to about 1.65 and having less than about 50 wt % SiO2. The plasma etching processes may include both chemical and physical etching components. In some embodiments, the plasma etching processes can include forming a patterned mask layer on at least a portion of the high refractive index glass substrate and exposing the mask layer and high refractive index glass substrate to a plasma to remove high refractive index glass from the exposed portions of the substrate. Any remaining mask layer is subsequently removed from the high refractive index glass substrate. The removal of the glass forms a desired patterned structure, such as a diffractive grating, in the high refractive index glass substrate.
-
-
-
-
-
-
-
-
-